IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p813-d80225.html
   My bibliography  Save this article

Performance Characteristics of PTC Elements for an Electric Vehicle Heating System

Author

Listed:
  • Yoon Hyuk Shin

    (Green Car Power System R&D Division, Korea Automotive Technology Institute, 74 Yongjung-ri, Pungse-myun, Dongnam-gu, Chonan-si, Chungnam 330-912, Korea)

  • Seung Ku Ahn

    (R&D Center, 67-2 Sangdaewon-dong, Jungwon-gu, Seongnam-si, Kyeonggi 462-120, Korea)

  • Sung Chul Kim

    (School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk 712-749, Korea)

Abstract

A high-voltage positive temperature coefficient (PTC) heater has a simple structure and a swift response. Therefore, for cabin heating in electric vehicles (EVs), such heaters are used either on their own or with a heat pump system. In this study, the sintering process in the manufacturing of PTC elements for an EV heating system was improved to enhance surface uniformity. The electrode production process entailing thin-film sputtering deposition was applied to ensure the high heating performance of PTC elements and reduce the electrode thickness. The allowable voltage and surface heat temperature of the high-voltage PTC elements with thin-film electrodes were 800 V and 172 °C, respectively. The electrode layer thickness was uniform at approximately 3.8 μm or less, approximately 69% less electrode materials were required compared to that before process improvement. Furthermore, a heater for the EV heating system was manufactured using the developed high-voltage PTC elements to verify performance and reliability.

Suggested Citation

  • Yoon Hyuk Shin & Seung Ku Ahn & Sung Chul Kim, 2016. "Performance Characteristics of PTC Elements for an Electric Vehicle Heating System," Energies, MDPI, vol. 9(10), pages 1-9, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:813-:d:80225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Jung, Hae Won & Baek, Changhyun & Kim, Yongchan, 2014. "Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles," Applied Energy, Elsevier, vol. 119(C), pages 1-9.
    2. Cheng, Wen-long & Yuan, Shuai & Song, Jia-liang, 2014. "Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures," Energy, Elsevier, vol. 74(C), pages 447-454.
    3. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Kim, Yongchan, 2015. "Performance characteristics of a dual-evaporator heat pump system for effective dehumidifying and heating of a cabin in electric vehicles," Applied Energy, Elsevier, vol. 146(C), pages 29-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    2. Myeong Hyeon Park & Sung Chul Kim, 2019. "Heating Performance Enhancement of High Capacity PTC Heater with Modified Louver Fin for Electric Vehicles," Energies, MDPI, vol. 12(15), pages 1-14, July.
    3. Said Bentouba & Nadjet Zioui & Peter Breuhaus & Mahmoud Bourouis, 2023. "Overview of the Potential of Energy Harvesting Sources in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, July.
    4. Ling, Ziye & Luo, Mingyun & Song, Jiaqi & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming, 2021. "A fast-heat battery system using the heat released from detonated supercooled phase change materials," Energy, Elsevier, vol. 219(C).
    5. Hyun Sung Kang & Seungkyu Sim & Yoon Hyuk Shin, 2018. "A Numerical Study on the Light-Weight Design of PTC Heater for an Electric Vehicle Heating System," Energies, MDPI, vol. 11(5), pages 1-15, May.
    6. James Jeffs & Andrew McGordon & Alessandro Picarelli & Simon Robinson & Yashraj Tripathy & Widanalage Dhammika Widanage, 2018. "Complex Heat Pump Operational Mode Identification and Comparison for Use in Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-24, August.
    7. Myeong Hyeon Park & Sung Chul Kim, 2017. "Heating Performance Characteristics of High-Voltage PTC Heater for an Electric Vehicle," Energies, MDPI, vol. 10(10), pages 1-14, September.
    8. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Zhu, Tingting & Li, Yan, 2023. "Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array," Applied Energy, Elsevier, vol. 337(C).
    9. Wang, Yujie & Zhang, Xingchen & Chen, Zonghai, 2022. "Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges," Applied Energy, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    2. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    3. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    4. Qin, Fei & Zhang, Guiying & Xue, Qingfeng & Zou, Huiming & Tian, Changqing, 2017. "Experimental investigation and theoretical analysis of heat pump systems with two different injection portholes compressors for electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 2085-2093.
    5. Yoon Hyuk Shin & Seungkyu Sim & Sung Chul Kim, 2015. "Performance Characteristics of a Modularized and Integrated PTC Heating System for an Electric Vehicle," Energies, MDPI, vol. 9(1), pages 1-11, December.
    6. Ahn, Jae Hwan & Lee, Joo Seong & Baek, Changhyun & Kim, Yongchan, 2016. "Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy," Energy, Elsevier, vol. 115(P1), pages 67-75.
    7. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    8. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    9. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    10. Weckerle, C. & Nasri, M. & Hegner, R. & Linder, M. & Bürger, I., 2019. "A metal hydride air-conditioning system for fuel cell vehicles – Performance investigations," Applied Energy, Elsevier, vol. 256(C).
    11. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    12. Said Bentouba & Nadjet Zioui & Peter Breuhaus & Mahmoud Bourouis, 2023. "Overview of the Potential of Energy Harvesting Sources in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, July.
    13. Ahn, Jae Hwan & Kim, Hoon & Jeon, Yongseok & Kwon, Ki Hyun, 2022. "Performance characteristics of mobile cooling system utilizing ice thermal energy storage with direct contact discharging for a refrigerated truck," Applied Energy, Elsevier, vol. 308(C).
    14. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Kim, Yongchan, 2015. "Performance characteristics of a dual-evaporator heat pump system for effective dehumidifying and heating of a cabin in electric vehicles," Applied Energy, Elsevier, vol. 146(C), pages 29-37.
    15. Dan Dan & Yihang Zhao & Mingshan Wei & Xuehui Wang, 2023. "Review of Thermal Management Technology for Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-38, June.
    16. Han, Xinxin & Zou, Huiming & Wu, Jiang & Tian, Changqing & Tang, Mingsheng & Huang, Guangyan, 2020. "Investigation on the heating performance of the heat pump with waste heat recovery for the electric bus," Renewable Energy, Elsevier, vol. 152(C), pages 835-848.
    17. Song, Mengjie & Xia, Liang & Mao, Ning & Deng, Shiming, 2016. "An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 164(C), pages 36-44.
    18. Zheng, Wandong & Yin, Hao & Li, Bojia & Zhang, Huan & Jurasz, Jakub & Zhong, Lei, 2022. "Heating performance and spatial analysis of seawater-source heat pump with staggered tube-bundle heat exchanger," Applied Energy, Elsevier, vol. 305(C).
    19. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls & Rokus van Iperen, 2019. "Integrated Energy and Thermal Management for Electrified Powertrains," Energies, MDPI, vol. 12(11), pages 1-24, May.
    20. Lee, Sangwook & Chung, Yoong & Lee, Yoo Il & Jeong, Yeonwoo & Kim, Min Soo, 2023. "Battery thermal management strategy utilizing a secondary heat pump in electric vehicle under cold-start conditions," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:813-:d:80225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.