IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics0360544219322509.html
   My bibliography  Save this article

Performance assessment of retired EV battery modules for echelon use

Author

Listed:
  • Zhang, Youlang
  • Li, Yan
  • Tao, Yibin
  • Ye, Jilei
  • Pan, Aiqiang
  • Li, Xinzhou
  • Liao, Qiangqiang
  • Wang, Zhiqin

Abstract

The performance of retired EV battery modules was tested in order to learn their attenuation states and different capacity test protocols of retired modules are compared in order to strike a balance between calibration accuracy and test time. The results show that most modules have no serious capacity fading while a minority of modules whose capacity is less than 80% SOH will bring about the capacity of the whole battery system down to below 80% SOH. Echelon use of EV battery from aspect of modules has more value than that from aspect of packs. The capacity fading of Pack 2 is more than that of Pack 1 due to a rise in temperature because the cold air enters the side of Pack 1 and exits from the side of Pack 2. High capacity is not always related to small resistance, showing that different modules have experienced different ageing processes. The retired modules still have good discharge ability at 25%–200% of rated power, implying that a retired battery energy storage system can be employed to satisfy power demand of electricity grid. The capacity test protocol of 1/3 C constant current process without constant voltage process is proposed for retired modules.

Suggested Citation

  • Zhang, Youlang & Li, Yan & Tao, Yibin & Ye, Jilei & Pan, Aiqiang & Li, Xinzhou & Liao, Qiangqiang & Wang, Zhiqin, 2020. "Performance assessment of retired EV battery modules for echelon use," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219322509
    DOI: 10.1016/j.energy.2019.116555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219322509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tong, Shi Jie & Same, Adam & Kootstra, Mark A. & Park, Jae Wan, 2013. "Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 104(C), pages 740-750.
    2. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    3. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
    5. Han, Xiaojuan & Liang, Yubo & Ai, Yaoyao & Li, Jianlin, 2018. "Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries," Energy, Elsevier, vol. 165(PA), pages 326-339.
    6. Lazzeroni, Paolo & Olivero, Sergio & Repetto, Maurizio & Stirano, Federico & Vallet, Marc, 2019. "Optimal battery management for vehicle-to-home and vehicle-to-grid operations in a residential case study," Energy, Elsevier, vol. 175(C), pages 704-721.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enguang Hou & Yanliang Xu & Xin Qiao & Guangmin Liu & Zhixue Wang, 2021. "State of Power Estimation of Echelon-Use Battery Based on Adaptive Dual Extended Kalman Filter," Energies, MDPI, vol. 14(17), pages 1-14, September.
    2. White, Chris & Thompson, Ben & Swan, Lukas G., 2021. "Comparative performance study of electric vehicle batteries repurposed for electricity grid energy arbitrage," Applied Energy, Elsevier, vol. 288(C).
    3. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo, 2023. "Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    4. Zhang, Huiming & Huang, Jiying & Hu, Ruohan & Zhou, Dequn & Khan, Haroon ur Rashid & Ma, Changxian, 2020. "Echelon utilization of waste power batteries in new energy vehicles: Review of Chinese policies," Energy, Elsevier, vol. 206(C).
    5. Ma, Chen & Chang, Long & Cui, Naxin & Duan, Bin & Zhang, Yulong & Yu, Zhihao, 2022. "Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization," Energy, Elsevier, vol. 257(C).
    6. Harper, Gavin D.J. & Kendrick, Emma & Anderson, Paul A. & Mrozik, Wojciech & Christensen, Paul & Lambert, Simon & Greenwood, David & Das, Prodip K. & Ahmeid, Mohamed & Milojevic, Zoran & Du, Wenjia & , 2023. "Roadmap for a sustainable circular economy in lithium-ion and future battery technologies," LSE Research Online Documents on Economics 118420, London School of Economics and Political Science, LSE Library.
    7. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    8. Fan, Jing-Li & Wang, Jia-Xing & Zhang, Xian, 2020. "An innovative subsidy model for promoting the sharing of Electric Vehicles in China: A pricing decisions analysis," Energy, Elsevier, vol. 201(C).
    9. Zhang, Yuanjian & Huang, Yanjun & Chen, Haibo & Na, Xiaoxiang & Chen, Zheng & Liu, Yonggang, 2021. "Driving behavior oriented torque demand regulation for electric vehicles with single pedal driving," Energy, Elsevier, vol. 228(C).
    10. Lai, Xin & Huang, Yunfeng & Deng, Cong & Gu, Huanghui & Han, Xuebing & Zheng, Yuejiu & Ouyang, Minggao, 2021. "Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Yang Yang & Wenchao Zhu & Changjun Xie & Ying Shi & Furong Liu & Weibo Li & Zebo Tang, 2020. "A Layered Bidirectional Active Equalization Method for Retired Power Lithium-Ion Batteries for Energy Storage Applications," Energies, MDPI, vol. 13(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wei & Lin, Boqiang & Xie, Chunping & Elliott, Robert J.R. & Radcliffe, Jonathan, 2020. "Does energy storage provide a profitable second life for electric vehicle batteries?," Energy Economics, Elsevier, vol. 92(C).
    2. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    3. Rafael G. Nagel & Vitor Fernão Pires & Jony L. Silveira & Armando Cordeiro & Daniel Foito, 2023. "Financial Analysis of Household Photovoltaic Self-Consumption in the Context of the Vehicle-to-Home ( V2H ) in Portugal," Energies, MDPI, vol. 16(3), pages 1-21, January.
    4. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
    5. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    6. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    7. Tang, Yanyan & Zhang, Qi & Wen, Zongguo & Bunn, Derek & Martin, Jesus Nieto, 2022. "Optimal analysis for facility configuration and energy management on electric light commercial vehicle charging," Energy, Elsevier, vol. 246(C).
    8. Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
    9. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    10. Al-Wreikat, Yazan & Attfield, Emily Kate & Sodré, José Ricardo, 2022. "Model for payback time of using retired electric vehicle batteries in residential energy storage systems," Energy, Elsevier, vol. 259(C).
    11. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    14. Aihua Wang & Qiqi Ruan & Teng Zhou & Yanzhen Wang, 2022. "Digitizable Product Trade Development and Carbon Emission: Evidence from 94 Countries," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    15. Michel Noussan & Matteo Jarre, 2021. "Assessing Commuting Energy and Emissions Savings through Remote Working and Carpooling: Lessons from an Italian Region," Energies, MDPI, vol. 14(21), pages 1-19, November.
    16. Ajayi, Patricia & Ogunrinola, Adedeji, 2020. "Growth, Trade Openness and Environmental Degradation in Nigeria," MPRA Paper 100713, University Library of Munich, Germany.
    17. Waseem Yousaf & Muhammad Sajjad Hussain & Anam Aziz, 2021. "The Role of Green Energy on Reducing the Carbon Emission in ASEAN Countries," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 34-39, June.
    18. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    19. Luo, Shihua & Hu, Weihao & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2022. "Flexibility enhancement measures under the COVID-19 pandemic – A preliminary comparative analysis in Denmark, the Netherlands, and Sichuan of China," Energy, Elsevier, vol. 239(PC).
    20. Duan, Ditao & Poursoleiman, Roza, 2021. "Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station," Utilities Policy, Elsevier, vol. 72(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219322509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.