IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922014921.html
   My bibliography  Save this article

Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles

Author

Listed:
  • Braco, Elisa
  • San Martín, Idoia
  • Sanchis, Pablo
  • Ursúa, Alfredo

Abstract

The success of second-life (SL) Li-ion batteries from electric vehicles is still conditioned by their technical and economic viability. The knowledge of the internal parameters of retired batteries at the repurposing stage is key to ensure their adequate operation and to enlarge SL lifetime. However, traditional characterization methods require long testing times and specific equipment, which result in high costs that may jeopardize the economic viability of SL. In the seek of optimizing the repurposing stage, this contribution proposes a novel fast characterization method that allows to estimate capacity and internal resistance at various state of charge for reused cells, modules and battery packs. Three estimation models are proposed. The first of them is based on measurements of AC resistance, the second on DC resistance and the third combines both resistance types. These models are validated in 506 cells, 203 modules and 3 battery packs from different Nissan Leaf vehicles. The results achieved are satisfactory, with mean absolute percentage errors (MAPE) below 2.5% at cell and module level in capacity prediction and lower than 2.4% in resistance estimation. Considering battery pack level, MAPE is below 4.2% and 1.8% in capacity and resistance estimation respectively. With the proposed method, testing times are reduced from more than one day to 2 min per cell, while energy consumption is lowered from 1.4 kWh to 1 Wh. In short, this study contributes to the reduction of repurposing procedures and costs, and ultimately to the success of SL batteries business model.

Suggested Citation

  • Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo, 2023. "Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014921
    DOI: 10.1016/j.apenergy.2022.120235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922014921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuanyuan & Sheng, Hanmin & Cheng, Yuhua & Stroe, Daniel-Ioan & Teodorescu, Remus, 2020. "State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis," Applied Energy, Elsevier, vol. 277(C).
    2. Jiang, Bo & Dai, Haifeng & Wei, Xuezhe, 2020. "Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition," Applied Energy, Elsevier, vol. 269(C).
    3. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
    4. Tong, Shi Jie & Same, Adam & Kootstra, Mark A. & Park, Jae Wan, 2013. "Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 104(C), pages 740-750.
    5. Zhang, Youlang & Li, Yan & Tao, Yibin & Ye, Jilei & Pan, Aiqiang & Li, Xinzhou & Liao, Qiangqiang & Wang, Zhiqin, 2020. "Performance assessment of retired EV battery modules for echelon use," Energy, Elsevier, vol. 193(C).
    6. Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
    7. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
    8. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    9. Li, Yihuan & Li, Kang & Liu, Xuan & Wang, Yanxia & Zhang, Li, 2021. "Lithium-ion battery capacity estimation — A pruned convolutional neural network approach assisted with transfer learning," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Henrique Illa Font & Hugo Valadares Siqueira & João Eustáquio Machado Neto & João Lucas Ferreira dos Santos & Sergio Luiz Stevan & Attilio Converti & Fernanda Cristina Corrêa, 2023. "Second Life of Lithium-Ion Batteries of Electric Vehicles: A Short Review and Perspectives," Energies, MDPI, vol. 16(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    2. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    3. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    4. Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2021. "Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data," Energy, Elsevier, vol. 225(C).
    5. Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
    6. Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Random health indicator and shallow neural network based robust capacity estimation for lithium-ion batteries with different fast charging protocols," Energy, Elsevier, vol. 271(C).
    7. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    8. Xue, Qiao & Li, Junqiu & Xu, Peipei, 2022. "Machine learning based swift online capacity prediction of lithium-ion battery through whole cycle life," Energy, Elsevier, vol. 261(PA).
    9. Chen, Junxiong & Hu, Yuanjiang & Zhu, Qiao & Rashid, Haroon & Li, Hongkun, 2023. "A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging," Energy, Elsevier, vol. 282(C).
    10. Lai, Xin & Yi, Wei & Cui, Yifan & Qin, Chao & Han, Xuebing & Sun, Tao & Zhou, Long & Zheng, Yuejiu, 2021. "Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter," Energy, Elsevier, vol. 216(C).
    11. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    12. Huang, Zhelin & Xu, Fan & Yang, Fangfang, 2023. "State of health prediction of lithium-ion batteries based on autoregression with exogenous variables model," Energy, Elsevier, vol. 262(PB).
    13. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
    14. Aree Wangsupphaphol & Surachai Chaitusaney & Mohamed Salem, 2023. "A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    15. Wang, Zhe & Yang, Fangfang & Xu, Qiang & Wang, Yongjian & Yan, Hong & Xie, Min, 2023. "Capacity estimation of lithium-ion batteries based on data aggregation and feature fusion via graph neural network," Applied Energy, Elsevier, vol. 336(C).
    16. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    17. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    18. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    19. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    20. Enguang Hou & Yanliang Xu & Xin Qiao & Guangmin Liu & Zhixue Wang, 2021. "State of Power Estimation of Echelon-Use Battery Based on Adaptive Dual Extended Kalman Filter," Energies, MDPI, vol. 14(17), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.