IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037186.html
   My bibliography  Save this article

Joint estimation of SOC and peak power capability for series reused battery pack based on screening process method

Author

Listed:
  • Zhang, Yujie
  • Liu, Baicheng
  • Zhang, Hongguang
  • Kuang, Rao
  • Xu, Yonghong
  • Zhang, Jian
  • Yang, Fubin
  • Wang, Shuo

Abstract

Lithium-ion battery disposal is becoming an increasingly important issue with the rapid growth of Electric Vehicles (EVs) regarding resource conservation and environmental sustainability. It is considered the most suitable solution to reuse rather than dispose of retired batteries. However, the precision in estimating the battery states is of great importance to ensure the operational safety and efficiency of reused battery packs. This study proposes a joint estimation method to predict the State of Charge (SOC) and the peak power capability for reused battery packs considering inconsistency. The primary content of this work is described as follows. (1) This paper designs an improved screening method for evaluating the consistency of the reused batteries that are used to connect to the series battery pack. (2) A second-order RC model is selected as the cell mean model (CMM) to represent the overall performance of the reused battery pack. On this basis, the mean SOC is estimated by using Sage-Husa adaptive algorithm and extended Kalman filter (SH-AEKF), whereas the peak power capability is evaluated by considering multiple limitations. (3) An experiment is conducted to evaluate the robustness of the joint estimation method. The results show that the maximum absolute error of SOC estimation is below ±3 % while the mean absolute percentage error (MAPE) of peak power capability estimation could be limited to less than 3.5 %. This study indicates the high accuracy and reliability of the proposed joint estimation method for retired battery packs.

Suggested Citation

  • Zhang, Yujie & Liu, Baicheng & Zhang, Hongguang & Kuang, Rao & Xu, Yonghong & Zhang, Jian & Yang, Fubin & Wang, Shuo, 2024. "Joint estimation of SOC and peak power capability for series reused battery pack based on screening process method," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037186
    DOI: 10.1016/j.energy.2024.133940
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jonghoon & Cho, B.H., 2013. "Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation," Energy, Elsevier, vol. 57(C), pages 581-599.
    2. Dai, Haifeng & Wei, Xuezhe & Sun, Zechang & Wang, Jiayuan & Gu, Weijun, 2012. "Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications," Applied Energy, Elsevier, vol. 95(C), pages 227-237.
    3. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    4. Sun, Fengchun & Xiong, Rui & He, Hongwen & Li, Weiqing & Aussems, Johan Eric Emmanuel, 2012. "Model-based dynamic multi-parameter method for peak power estimation of lithium–ion batteries," Applied Energy, Elsevier, vol. 96(C), pages 378-386.
    5. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Zhang, Youlang & Li, Yan & Tao, Yibin & Ye, Jilei & Pan, Aiqiang & Li, Xinzhou & Liao, Qiangqiang & Wang, Zhiqin, 2020. "Performance assessment of retired EV battery modules for echelon use," Energy, Elsevier, vol. 193(C).
    7. Hu, Chao & Youn, Byeng D. & Chung, Jaesik, 2012. "A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation," Applied Energy, Elsevier, vol. 92(C), pages 694-704.
    8. He, Yao & Liu, XingTao & Zhang, ChenBin & Chen, ZongHai, 2013. "A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries," Applied Energy, Elsevier, vol. 101(C), pages 808-814.
    9. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Tang, Aihua & Kan, Jiarong & Pecht, Michael, 2024. "SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion," Energy, Elsevier, vol. 308(C).
    10. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    11. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    2. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    3. Ng, Selina S.Y. & Xing, Yinjiao & Tsui, Kwok L., 2014. "A naive Bayes model for robust remaining useful life prediction of lithium-ion battery," Applied Energy, Elsevier, vol. 118(C), pages 114-123.
    4. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    5. Jhu, Can-Yong & Wang, Yih-Wen & Wen, Chia-Yuan & Shu, Chi-Min, 2012. "Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology," Applied Energy, Elsevier, vol. 100(C), pages 127-131.
    6. Zhu, Wenhua H. & Zhu, Ying & Davis, Zenda & Tatarchuk, Bruce J., 2013. "Energy efficiency and capacity retention of Ni–MH batteries for storage applications," Applied Energy, Elsevier, vol. 106(C), pages 307-313.
    7. Bai, Guangxing & Wang, Pingfeng & Hu, Chao & Pecht, Michael, 2014. "A generic model-free approach for lithium-ion battery health management," Applied Energy, Elsevier, vol. 135(C), pages 247-260.
    8. He, HongWen & Zhang, YongZhi & Xiong, Rui & Wang, Chun, 2015. "A novel Gaussian model based battery state estimation approach: State-of-Energy," Applied Energy, Elsevier, vol. 151(C), pages 41-48.
    9. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2014. "A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries," Applied Energy, Elsevier, vol. 135(C), pages 81-87.
    10. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    11. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    13. Wei, Jingwen & Dong, Guangzhong & Chen, Zonghai & Kang, Yu, 2017. "System state estimation and optimal energy control framework for multicell lithium-ion battery system," Applied Energy, Elsevier, vol. 187(C), pages 37-49.
    14. Miranda, Á.G. & Hong, C.W., 2013. "Integrated modeling for the cyclic behavior of high power Li-ion batteries under extended operating conditions," Applied Energy, Elsevier, vol. 111(C), pages 681-689.
    15. Dai, Haifeng & Guo, Pingjing & Wei, Xuezhe & Sun, Zechang & Wang, Jiayuan, 2015. "ANFIS (adaptive neuro-fuzzy inference system) based online SOC (State of Charge) correction considering cell divergence for the EV (electric vehicle) traction batteries," Energy, Elsevier, vol. 80(C), pages 350-360.
    16. Xue, Nansi & Du, Wenbo & Greszler, Thomas A. & Shyy, Wei & Martins, Joaquim R.R.A., 2014. "Design of a lithium-ion battery pack for PHEV using a hybrid optimization method," Applied Energy, Elsevier, vol. 115(C), pages 591-602.
    17. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    18. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    19. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    20. Noshin Omar & Peter Van den Bossche & Thierry Coosemans & Joeri Van Mierlo, 2013. "Peukert Revisited—Critical Appraisal and Need for Modification for Lithium-Ion Batteries," Energies, MDPI, vol. 6(11), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.