Retired battery capacity screening based on deep learning with embedded feature smoothing under massive imbalanced data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.134761
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Sun, Jing & Fan, Chaoqun & Yan, Huiyi, 2024. "SOH estimation of lithium-ion batteries based on multi-feature deep fusion and XGBoost," Energy, Elsevier, vol. 306(C).
- Zhang, Yixing & Feng, Fei & Wang, Shunli & Meng, Jinhao & Xie, Jiale & Ling, Rui & Yin, Hongpeng & Zhang, Ke & Chai, Yi, 2023. "Joint nonlinear-drift-driven Wiener process-Markov chain degradation switching model for adaptive online predicting lithium-ion battery remaining useful life," Applied Energy, Elsevier, vol. 341(C).
- Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
- Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Zhang, Yujie & Liu, Baicheng & Zhang, Hongguang & Kuang, Rao & Xu, Yonghong & Zhang, Jian & Yang, Fubin & Wang, Shuo, 2024. "Joint estimation of SOC and peak power capability for series reused battery pack based on screening process method," Energy, Elsevier, vol. 313(C).
- Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
- Wu, Ji & Fang, Leichao & Dong, Guangzhong & Lin, Mingqiang, 2023. "State of health estimation of lithium-ion battery with improved radial basis function neural network," Energy, Elsevier, vol. 262(PB).
- Fan, Guodong & Zhang, Xi, 2023. "Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network," Applied Energy, Elsevier, vol. 330(PA).
- Tian, Jiaqiang & Xu, Ruilong & Wang, Yujie & Chen, Zonghai, 2021. "Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries," Energy, Elsevier, vol. 221(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
- Sun, Jing & Wang, Haitao, 2025. "State of health estimation for lithium-ion batteries based on optimal feature subset algorithm," Energy, Elsevier, vol. 322(C).
- Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2025. "Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization," Applied Energy, Elsevier, vol. 379(C).
- Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
- Liu, Xinghua & Li, Siqi & Tian, Jiaqiang & Wei, Zhongbao & Wang, Peng, 2023. "Health estimation of lithium-ion batteries with voltage reconstruction and fusion model," Energy, Elsevier, vol. 282(C).
- Yan, Lisen & Peng, Jun & Gao, Dianzhu & Wu, Yue & Liu, Yongjie & Li, Heng & Liu, Weirong & Huang, Zhiwu, 2022. "A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery," Energy, Elsevier, vol. 243(C).
- Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
- Li, Qingbo & Lu, Taolin & Lai, Chunyan & Li, Jiwei & Pan, Long & Ma, Changjun & Zhu, Yunpeng & Xie, Jingying, 2024. "Lithium-ion battery capacity estimation based on fragment charging data using deep residual shrinkage networks and uncertainty evaluation," Energy, Elsevier, vol. 290(C).
- Sonthalia, Ankit & Femilda Josephin, J.S. & Varuvel, Edwin Geo & Chinnathambi, Arunachalam & Subramanian, Thiyagarajan & Kiani, Farzad, 2025. "A deep learning multi-feature based fusion model for predicting the state of health of lithium-ion batteries," Energy, Elsevier, vol. 317(C).
- Liu, Zhi-Feng & Huang, Ya-He & Zhang, Shu-Rui & Luo, Xing-Fu & Chen, Xiao-Rui & Lin, Jun-Jie & Tang, Yu & Guo, Liang & Li, Ji-Xiang, 2025. "A collaborative interaction gate-based deep learning model with optimal bandwidth adjustment strategies for lithium-ion battery capacity point-interval forecasting," Applied Energy, Elsevier, vol. 377(PD).
- Mei, Peng & Karimi, Hamid Reza & Xie, Jiale & Chen, Fei & Ou, Lei & Yang, Shichun & Huang, Cong, 2024. "Battery state estimation methods and management system under vehicle–cloud collaboration: A Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
- Gu, Xin & Li, Jinglun & Zhu, Yuhao & Wang, Yue & Mao, Ziheng & Shang, Yunlong, 2023. "A quick and intelligent screening method for large-scale retired batteries based on cloud-edge collaborative architecture," Energy, Elsevier, vol. 285(C).
- Li, Fang & Feng, Haonan & Min, Yongjun & Zhang, Yong & Zuo, Hongfu & Bai, Fang & Zhang, Ying, 2025. "Prediction of lithium-ion battery degradation trajectory in electric vehicles under real-world scenarios," Energy, Elsevier, vol. 317(C).
- Giovane Ronei Sylvestrin & Joylan Nunes Maciel & Marcio Luís Munhoz Amorim & João Paulo Carmo & José A. Afonso & Sérgio F. Lopes & Oswaldo Hideo Ando Junior, 2025. "State of the Art in Electric Batteries’ State-of-Health (SoH) Estimation with Machine Learning: A Review," Energies, MDPI, vol. 18(3), pages 1-77, February.
- Liu, Donglei & Wang, Shunli & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2024. "An optimized multi-segment long short-term memory network strategy for power lithium-ion battery state of charge estimation adaptive wide temperatures," Energy, Elsevier, vol. 304(C).
- Chen, Guanxu & Yang, Fangfang & Peng, Weiwen & Fan, Yuqian & Lyu, Ximin, 2024. "State-of-health estimation for lithium-ion batteries based on Kullback–Leibler divergence and a retentive network," Applied Energy, Elsevier, vol. 376(PB).
- Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
- He, Ning & Wang, Qiqi & Lu, Zhenfeng & Chai, Yike & Yang, Fangfang, 2024. "Early prediction of battery lifetime based on graphical features and convolutional neural networks," Applied Energy, Elsevier, vol. 353(PA).
- Che, Yunhong & Deng, Zhongwei & Li, Penghua & Tang, Xiaolin & Khosravinia, Kavian & Lin, Xianke & Hu, Xiaosong, 2022. "State of health prognostics for series battery packs: A universal deep learning method," Energy, Elsevier, vol. 238(PB).
- Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004037. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.