IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v115y2014icp591-602.html
   My bibliography  Save this article

Design of a lithium-ion battery pack for PHEV using a hybrid optimization method

Author

Listed:
  • Xue, Nansi
  • Du, Wenbo
  • Greszler, Thomas A.
  • Shyy, Wei
  • Martins, Joaquim R.R.A.

Abstract

This paper outlines a method for optimizing the design of a lithium-ion battery pack for hybrid vehicle applications using a hybrid numerical optimization method that combines multiple individual optimizers. A gradient-free optimizer (ALPSO) is coupled with a gradient-based optimizer (SNOPT) to solve a mixed-integer nonlinear battery pack design problem. This method enables maximizing the properties of a battery pack subjected to multiple safety and performance constraints. The optimization framework is applied to minimize the mass, volume and material costs. The optimized pack design satisfies the energy and power constraints exactly and shows 13.9–18% improvement in battery pack properties over initial designs. The optimal pack designs also performed better in driving cycle tests, resulting in 23.1–32.8% increase in distance covered per unit of battery performance metric, where the metric is either mass, volume or material cost.

Suggested Citation

  • Xue, Nansi & Du, Wenbo & Greszler, Thomas A. & Shyy, Wei & Martins, Joaquim R.R.A., 2014. "Design of a lithium-ion battery pack for PHEV using a hybrid optimization method," Applied Energy, Elsevier, vol. 115(C), pages 591-602.
  • Handle: RePEc:eee:appene:v:115:y:2014:i:c:p:591-602
    DOI: 10.1016/j.apenergy.2013.10.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300874X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.10.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Liang & Zhang, Chenbin & He, Yao & Chen, Zonghai, 2014. "A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis," Applied Energy, Elsevier, vol. 113(C), pages 558-564.
    2. Dai, Haifeng & Wei, Xuezhe & Sun, Zechang & Wang, Jiayuan & Gu, Weijun, 2012. "Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications," Applied Energy, Elsevier, vol. 95(C), pages 227-237.
    3. Hung, Yi-Hsuan & Wu, Chien-Hsun, 2012. "An integrated optimization approach for a hybrid energy system in electric vehicles," Applied Energy, Elsevier, vol. 98(C), pages 479-490.
    4. Zheng, Yuejiu & Ouyang, Minggao & Lu, Languang & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Ma, Hongbin & Dollmeyer, Thomas A. & Freyermuth, Vincent, 2013. "Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model," Applied Energy, Elsevier, vol. 111(C), pages 571-580.
    5. Sun, Fengchun & Xiong, Rui & He, Hongwen & Li, Weiqing & Aussems, Johan Eric Emmanuel, 2012. "Model-based dynamic multi-parameter method for peak power estimation of lithium–ion batteries," Applied Energy, Elsevier, vol. 96(C), pages 378-386.
    6. Hu, Chao & Youn, Byeng D. & Chung, Jaesik, 2012. "A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation," Applied Energy, Elsevier, vol. 92(C), pages 694-704.
    7. Darcovich, K. & Henquin, E.R. & Kenney, B. & Davidson, I.J. & Saldanha, N. & Beausoleil-Morrison, I., 2013. "Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration," Applied Energy, Elsevier, vol. 111(C), pages 853-861.
    8. Yuan Zou & Fengchun Sun & Xiaosong Hu & Lino Guzzella & Huei Peng, 2012. "Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle," Energies, MDPI, vol. 5(11), pages 1-14, November.
    9. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    10. Wu, Xiaolan & Cao, Binggang & Li, Xueyan & Xu, Jun & Ren, Xiaolong, 2011. "Component sizing optimization of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 88(3), pages 799-804, March.
    11. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.
    2. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    3. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Liao, Siyang & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao, 2018. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources," Applied Energy, Elsevier, vol. 211(C), pages 237-248.
    4. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
    5. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    6. Yan, Dongxiang & Lu, Languang & Li, Zhe & Feng, Xuning & Ouyang, Minggao & Jiang, Fachao, 2016. "Durability comparison of four different types of high-power batteries in HEV and their degradation mechanism analysis," Applied Energy, Elsevier, vol. 179(C), pages 1123-1130.
    7. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    8. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
    9. Julian Estaller & Anton Kersten & Manuel Kuder & Torbjörn Thiringer & Richard Eckerle & Thomas Weyh, 2022. "Overview of Battery Impedance Modeling Including Detailed State-of-the-Art Cylindrical 18650 Lithium-Ion Battery Cell Comparisons," Energies, MDPI, vol. 15(10), pages 1-21, May.
    10. Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
    11. Chang, Long & Ma, Chen & Zhang, Chenghui & Duan, Bin & Cui, Naxin & Li, Changlong, 2023. "Correlations of lithium-ion battery parameter variations and connected configurations on pack statistics," Applied Energy, Elsevier, vol. 329(C).
    12. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    13. Mahmoodi-k, Mehdi & Montazeri, Morteza & Madanipour, Vahid, 2021. "Simultaneous multi-objective optimization of a PHEV power management system and component sizing in real world traffic condition," Energy, Elsevier, vol. 233(C).
    14. Saw, L.H. & Ye, Y. & Tay, A.A.O., 2014. "Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles," Applied Energy, Elsevier, vol. 131(C), pages 97-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    2. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    3. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    4. Wei, Jingwen & Dong, Guangzhong & Chen, Zonghai & Kang, Yu, 2017. "System state estimation and optimal energy control framework for multicell lithium-ion battery system," Applied Energy, Elsevier, vol. 187(C), pages 37-49.
    5. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    6. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2014. "A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries," Applied Energy, Elsevier, vol. 135(C), pages 81-87.
    7. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    8. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    10. Shifei Yuan & Hongjie Wu & Xuerui Ma & Chengliang Yin, 2015. "Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration," Energies, MDPI, vol. 8(8), pages 1-23, July.
    11. Truchot, Cyril & Dubarry, Matthieu & Liaw, Bor Yann, 2014. "State-of-charge estimation and uncertainty for lithium-ion battery strings," Applied Energy, Elsevier, vol. 119(C), pages 218-227.
    12. Ouyang, Minggao & Feng, Xuning & Han, Xuebing & Lu, Languang & Li, Zhe & He, Xiangming, 2016. "A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery," Applied Energy, Elsevier, vol. 165(C), pages 48-59.
    13. Wang, Limei & Pan, Chaofeng & Liu, Liang & Cheng, Yong & Zhao, Xiuliang, 2016. "On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis," Applied Energy, Elsevier, vol. 168(C), pages 465-472.
    14. Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
    15. Ng, Selina S.Y. & Xing, Yinjiao & Tsui, Kwok L., 2014. "A naive Bayes model for robust remaining useful life prediction of lithium-ion battery," Applied Energy, Elsevier, vol. 118(C), pages 114-123.
    16. Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
    17. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    18. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    19. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    20. Dai, Haifeng & Xu, Tianjiao & Zhu, Letao & Wei, Xuezhe & Sun, Zechang, 2016. "Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales," Applied Energy, Elsevier, vol. 184(C), pages 119-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:115:y:2014:i:c:p:591-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.