IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v191y2020ics0360544219321711.html
   My bibliography  Save this article

Intelligent energy management system for conventional autonomous vehicles

Author

Listed:
  • Phan, Duong
  • Bab-Hadiashar, Alireza
  • Lai, Chow Yin
  • Crawford, Bryn
  • Hoseinnezhad, Reza
  • Jazar, Reza N.
  • Khayyam, Hamid

Abstract

Autonomous vehicles have been envisioned to increase vehicle safety, primarily via the reduction of accidents. However, their design could also affect the vehicle travel demand and energy consumption. Although battery-powered electric and hybrid-electric autonomous vehicles assume more widespread use than conventional autonomous vehicles, energy management is harder and more significant for conventional autonomous vehicles. As such, it is necessary to investigate how to manage energy consumption in conventional autonomous vehicles. In this paper, an energy management system is constructed and analyzed by using a road-power-demand model and an intelligent system to reduce fuel consumption for a conventional autonomous vehicle. The road-power-demand model utilizes three impact factors (i) environment-conditions (ii) driver-behavior, and (iii) vehicle-specifications. The proposed intelligent energy management system includes a fuzzy-logic-system with the aim of generating the desired engine torque, based on the vehicle road power demand and a PID controller to control the air/fuel ratio, by changing the throttle angle. Results show that the intelligent energy management system reduces the vehicle energy consumption from 7.2 to 6.71 L/100 km. Next, the parameters of the fuzzy-logic-system are intelligently optimized by the particle-swarm-optimization method and new results indicate that the vehicle energy consumption is reduced by around 9.58%.

Suggested Citation

  • Phan, Duong & Bab-Hadiashar, Alireza & Lai, Chow Yin & Crawford, Bryn & Hoseinnezhad, Reza & Jazar, Reza N. & Khayyam, Hamid, 2020. "Intelligent energy management system for conventional autonomous vehicles," Energy, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219321711
    DOI: 10.1016/j.energy.2019.116476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219321711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Feiqi & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2019. "Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation," Energy Policy, Elsevier, vol. 132(C), pages 462-473.
    2. Carta, J.A. & Ramírez, P., 2007. "Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions," Renewable Energy, Elsevier, vol. 32(3), pages 518-531.
    3. Khayyam, Hamid & Bab-Hadiashar, Alireza, 2014. "Adaptive intelligent energy management system of plug-in hybrid electric vehicle," Energy, Elsevier, vol. 69(C), pages 319-335.
    4. Hengstler, Monika & Enkel, Ellen & Duelli, Selina, 2016. "Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 105-120.
    5. Iacobucci, Riccardo & McLellan, Benjamin & Tezuka, Tetsuo, 2018. "Modeling shared autonomous electric vehicles: Potential for transport and power grid integration," Energy, Elsevier, vol. 158(C), pages 148-163.
    6. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    7. Cancino-Solórzano, Yoreley & Xiberta-Bernat, Jorge, 2009. "Statistical analysis of wind power in the region of Veracruz (Mexico)," Renewable Energy, Elsevier, vol. 34(6), pages 1628-1634.
    8. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    2. Duong Phan & Alireza Bab-Hadiashar & Reza Hoseinnezhad & Reza N. Jazar & Abhijit Date & Ali Jamali & Dinh Ba Pham & Hamid Khayyam, 2020. "Neuro-Fuzzy System for Energy Management of Conventional Autonomous Vehicles," Energies, MDPI, vol. 13(7), pages 1-16, April.
    3. Duong Phan & Ali Moradi Amani & Mirhamed Mola & Ahmad Asgharian Rezaei & Mojgan Fayyazi & Mahdi Jalili & Dinh Ba Pham & Reza Langari & Hamid Khayyam, 2021. "Cascade Adaptive MPC with Type 2 Fuzzy System for Safety and Energy Management in Autonomous Vehicles: A Sustainable Approach for Future of Transportation," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    4. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2021. "Sustainable advanced distribution management system design considering differential pricing schemes and carbon emissions," Energy, Elsevier, vol. 219(C).
    5. Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).
    6. Ilyes Tegani & Okba Kraa & Haitham S. Ramadan & Mohamed Yacine Ayad, 2023. "Practical Energy Management Control of Fuel Cell Hybrid Electric Vehicles Using Artificial-Intelligence-Based Flatness Theory," Energies, MDPI, vol. 16(13), pages 1-23, June.
    7. Ziad Al-Saadi & Duong Phan Van & Ali Moradi Amani & Mojgan Fayyazi & Samaneh Sadat Sajjadi & Dinh Ba Pham & Reza Jazar & Hamid Khayyam, 2022. "Intelligent Driver Assistance and Energy Management Systems of Hybrid Electric Autonomous Vehicles," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    8. Lu, Zhiming & Gao, Yan & Xu, Chuanbo, 2021. "Evaluation of energy management system for regional integrated energy system under interval type-2 hesitant fuzzy environment," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duong Phan & Alireza Bab-Hadiashar & Reza Hoseinnezhad & Reza N. Jazar & Abhijit Date & Ali Jamali & Dinh Ba Pham & Hamid Khayyam, 2020. "Neuro-Fuzzy System for Energy Management of Conventional Autonomous Vehicles," Energies, MDPI, vol. 13(7), pages 1-16, April.
    2. Agnieszka Dudziak & Monika Stoma & Andrzej Kuranc & Jacek Caban, 2021. "Assessment of Social Acceptance for Autonomous Vehicles in Southeastern Poland," Energies, MDPI, vol. 14(18), pages 1-16, September.
    3. Chen, Shuiwang & Hu, Lu & Yao, Zhihong & Zhu, Juanxiu & Zhao, Bin & Jiang, Yangsheng, 2022. "Efficient and environmentally friendly operation of intermittent dedicated lanes for connected autonomous vehicles in mixed traffic environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    4. Lu, Xiaonong & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Song, Hao & Wang, Wanying, 2020. "Charging and relocating optimization for electric vehicle car-sharing: An event-based strategy improvement approach," Energy, Elsevier, vol. 207(C).
    5. Li, Shunxi & Sui, Pang-Chieh & Xiao, Jinsheng & Chahine, Richard, 2019. "Policy formulation for highly automated vehicles: Emerging importance, research frontiers and insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 573-586.
    6. Liao, Zitong & Taiebat, Morteza & Xu, Ming, 2021. "Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits," Applied Energy, Elsevier, vol. 302(C).
    7. Nastjuk, Ilja & Herrenkind, Bernd & Marrone, Mauricio & Brendel, Alfred Benedikt & Kolbe, Lutz M., 2020. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    9. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    10. Lindgren, Thomas & Pink, Sarah & Fors, Vaike, 2021. "Fore-sighting autonomous driving - An Ethnographic approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    11. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    12. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    13. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    14. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    16. Blume, Maximilian & Oberländer, Anna Maria & Röglinger, Maximilian & Rosemann, Michael & Wyrtki, Katrin, 2020. "Ex ante assessment of disruptive threats: Identifying relevant threats before one is disrupted," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    17. Hegazy, Omar & Barrero, Ricardo & Van den Bossche, Peter & El Baghdadi, Mohamed & Smekens, Jelle & Van Mierlo, Joeri & Vriens, Wouter & Bogaerts, Bruno, 2016. "Modeling, analysis and feasibility study of new drivetrain architectures for off-highway vehicles," Energy, Elsevier, vol. 109(C), pages 1056-1074.
    18. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    19. Xin-Wei Li & Hong-Zhi Miao, 2023. "How to Incorporate Autonomous Vehicles into the Carbon Neutrality Framework of China: Legal and Policy Perspectives," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    20. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219321711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.