IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp336-342.html
   My bibliography  Save this article

Charcoal as a bacteriological adherent for biomethanation of organic wastes

Author

Listed:
  • Sánchez-Sánchez, Consolación
  • González-González, Almudena
  • Cuadros-Salcedo, Francisco
  • Gómez-Serrano, Vicente
  • Cuadros-Blázquez, Francisco

Abstract

This paper analyses the improved energy and environmental performance of the biomethanation of a mixture of sheep manure (20% by weight) and cheese whey (80% by weight) in a reactor of 2 L capacity containing 2 g of charcoal in the form of a fixed bed with respect to the same process but without the charcoal in the reactor (control experiment). The results show an increased methane production of 27.05% and a reduction of the H2S content in the biogas of 34.7%, over those obtained in the control experiment. These marked improvements of the biomethanation process are attributable to the content of highly electropositive metals such as K and Ca in the charcoal which, because chemical reactions, can increase the pH of the medium and thus favour the processes of methanogenesis and sulphate reduction. Charcoal would act as a bacteriological adherent promoting the biomethanation of the organic waste materials used in the study.

Suggested Citation

  • Sánchez-Sánchez, Consolación & González-González, Almudena & Cuadros-Salcedo, Francisco & Gómez-Serrano, Vicente & Cuadros-Blázquez, Francisco, 2019. "Charcoal as a bacteriological adherent for biomethanation of organic wastes," Energy, Elsevier, vol. 179(C), pages 336-342.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:336-342
    DOI: 10.1016/j.energy.2019.04.192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930831X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dominic Woolf & James E. Amonette & F. Alayne Street-Perrott & Johannes Lehmann & Stephen Joseph, 2010. "Sustainable biochar to mitigate global climate change," Nature Communications, Nature, vol. 1(1), pages 1-9, December.
    2. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    3. Gong, Wei-jia & Liang, Heng & Li, Wen-zhe & Wang, Zhen-zhen, 2011. "Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure," Energy, Elsevier, vol. 36(5), pages 3572-3578.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez-Marín, N. & Bridgwater, A.V., 2021. "Mapping bioenergy stakeholders: A systematic and scientometric review of capabilities and expertise in bioenergy research in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Abhinav Choudhury & Stephanie Lansing, 2019. "Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture," Energies, MDPI, vol. 12(23), pages 1-12, November.
    3. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
    4. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    6. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    7. Coultry, James & Walsh, Eilín & McDonnell, Kevin P., 2013. "Energy and economic implications of anaerobic digestion pasteurisation regulations in Ireland," Energy, Elsevier, vol. 60(C), pages 125-128.
    8. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
    9. Pérez-Rodríguez, N. & García-Bernet, D. & Domínguez, J.M., 2017. "Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production," Renewable Energy, Elsevier, vol. 107(C), pages 597-603.
    10. Roberts, Cameron & Greene, Jenna & Nemet, Gregory F., 2023. "Key enablers for carbon dioxide removal through the application of biochar to agricultural soils: Evidence from three historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    11. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    12. Yao, Yiqing & Sheng, Hongmei & Luo, Yang & He, Mulan & Li, Xiangkai & Zhang, Hua & He, Wenliang & An, Lizhe, 2014. "Optimization of anaerobic co-digestion of Solidago canadensis L. biomass and cattle slurry," Energy, Elsevier, vol. 78(C), pages 122-127.
    13. George F. Antonious & Eric T. Turley & Mohammad H. Dawood, 2020. "Monitoring Soil Enzymes Activity before and after Animal Manure Application," Agriculture, MDPI, vol. 10(5), pages 1-12, May.
    14. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.
    15. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    16. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    17. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Salah Jellali & Yassine Charabi & Muhammad Usman & Abdullah Al-Badi & Mejdi Jeguirim, 2021. "Investigations on Biogas Recovery from Anaerobic Digestion of Raw Sludge and Its Mixture with Agri-Food Wastes: Application to the Largest Industrial Estate in Oman," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    19. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    20. Solinas, Stefania & Tiloca, Maria Teresa & Deligios, Paola A. & Cossu, Marco & Ledda, Luigi, 2021. "Carbon footprints and social carbon cost assessments in a perennial energy crop system: A comparison of fertilizer management practices in a Mediterranean area," Agricultural Systems, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:336-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.