IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp953-965.html
   My bibliography  Save this article

Impedance matching control strategy for a solar cooling system directly driven by distributed photovoltaics

Author

Listed:
  • Han, Youhua
  • Li, Ming
  • Wang, Yunfeng
  • Li, Guoliang
  • Ma, Xun
  • Wang, Rui
  • Wang, Liang

Abstract

In this paper, an integrated control strategy for a solar cooling system directly driven by distributed photovoltaics (PVs) without a battery is proposed; this strategy matches the optimal operating impedance of the PV array by periodically perturbing the running frequency of the compressor. The theoretical working principle of the control strategy is explained, and two experimental processes are analysed under different solar irradiance levels. Furthermore, comparative tests of the control system with and without a controller were conducted to evaluate the performance of the solar cooling system. The results of the experiment under the impedance matching control strategy reveal that the average photoelectric conversion efficiency reached approximately 0.129 and improved by 83.7% relative to the control system without a controller. The coefficient of performance (COPsolar) reached 0.263 using an ice thermal storage model, which was an improvement of 60.4%. The compressor ran continually when the instantaneous irradiance exceeded 143 W/m2. The average efficiency of the control system reached 0.96, and the average three-phase power factor was approximately 0.71. The COP of the refrigeration unit was 2.10, and the total cooling capacity was 103.5 MJ, which was sufficient for cooling a 25.5-m2 air-conditioned room for 8.5 h.

Suggested Citation

  • Han, Youhua & Li, Ming & Wang, Yunfeng & Li, Guoliang & Ma, Xun & Wang, Rui & Wang, Liang, 2019. "Impedance matching control strategy for a solar cooling system directly driven by distributed photovoltaics," Energy, Elsevier, vol. 168(C), pages 953-965.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:953-965
    DOI: 10.1016/j.energy.2018.11.148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218323594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Assessment of forecasting methods on performance of photovoltaic-battery systems," Applied Energy, Elsevier, vol. 221(C), pages 358-373.
    2. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    3. Merino, S. & Sánchez, F. & Guzmán, F. & Martínez, J., 2018. "Reverse decomposition method vs simplified photovoltaic module electrical model comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3946-3951.
    4. Izquierdo, M. & Marcos, J.D. & Palacios, M.E. & González-Gil, A., 2012. "Experimental evaluation of a low-power direct air-cooled double-effect LiBr–H2O absorption prototype," Energy, Elsevier, vol. 37(1), pages 737-748.
    5. Sheik Mohammed, S. & Devaraj, D. & Imthias Ahamed, T.P., 2016. "A novel hybrid Maximum Power Point Tracking Technique using Perturb & Observe algorithm and Learning Automata for solar PV system," Energy, Elsevier, vol. 112(C), pages 1096-1106.
    6. Huang, Bin-Juine & Hou, Tung-Fu & Hsu, Po-Chien & Lin, Tse-Han & Chen, Yan-Tze & Chen, Chi-Wen & Li, Kang & Lee, K.Y., 2016. "Design of direct solar PV driven air conditioner," Renewable Energy, Elsevier, vol. 88(C), pages 95-101.
    7. Atouei, S. Ahmadi & Rezania, A. & Ranjbar, A.A. & Rosendahl, L.A., 2018. "Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation," Energy, Elsevier, vol. 156(C), pages 311-318.
    8. Li, Y. & Zhao, B.Y. & Zhao, Z.G. & Taylor, R.A. & Wang, R.Z., 2018. "Performance study of a grid-connected photovoltaic powered central air conditioner in the South China climate," Renewable Energy, Elsevier, vol. 126(C), pages 1113-1125.
    9. Noro, M. & Lazzarin, R.M., 2014. "Solar cooling between thermal and photovoltaic: An energy and economic comparative study in the Mediterranean conditions," Energy, Elsevier, vol. 73(C), pages 453-464.
    10. Safizadeh, M. Reza & Morgenstern, Alexander & Bongs, Constanze & Henning, Hans-Martin & Luther, Joachim, 2016. "Optimization of a heat assisted air-conditioning system comprising membrane and desiccant technologies for applications in tropical climates," Energy, Elsevier, vol. 101(C), pages 52-64.
    11. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2011. "Numerical simulation of a solar-assisted ejector air conditioning system with cold storage," Energy, Elsevier, vol. 36(2), pages 1280-1291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chauhan, Amisha & Trembley, Jon & Wrobel, Luiz C. & Jouhara, Hussam, 2019. "Experimental and CFD validation of the thermal performance of a cryogenic batch freezer with the effect of loading," Energy, Elsevier, vol. 171(C), pages 77-94.
    2. Li, Guoliang & Han, Youhua & Li, Ming & Luo, Xi & Xu, Yongfeng & Wang, Yunfeng & Zhang, Ying, 2021. "Study on matching characteristics of photovoltaic disturbance and refrigeration compressor in solar photovoltaic direct-drive air conditioning system," Renewable Energy, Elsevier, vol. 172(C), pages 1145-1153.
    3. Zhou, Xiaoyan & Zhang, Ying & Ma, Xun & Li, Guoliang & Wang, Yunfeng & Hu, Chengzhi & Liang, Junyu & Li, Ming, 2022. "Performance characteristics of photovoltaic cold storage under composite control of maximum power tracking and constant voltage per frequency," Applied Energy, Elsevier, vol. 305(C).
    4. Gao, Yuhe & Ji, Jie & Han, Kedong & Zhang, Feng, 2021. "Experimental and numerical study of a PV/T direct-driven refrigeration/heating system," Energy, Elsevier, vol. 230(C).
    5. Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
    6. Su, Zixiang & Yang, Liu, 2022. "Peak shaving strategy for renewable hybrid system driven by solar and radiative cooling integrating carbon capture and sewage treatment," Renewable Energy, Elsevier, vol. 197(C), pages 1115-1132.
    7. Su, Peng & Ji, Jie & Cai, Jingyong & Gao, Yuhe & Han, Kedong, 2020. "Dynamic simulation and experimental study of a variable speed photovoltaic DC refrigerator," Renewable Energy, Elsevier, vol. 152(C), pages 155-164.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yuhe & Ji, Jie & Han, Kedong & Zhang, Feng, 2021. "Experimental and numerical study of a PV/T direct-driven refrigeration/heating system," Energy, Elsevier, vol. 230(C).
    2. Liang, Ruobing & Zhou, Chao & Zhang, Jili & Chen, Jianquan & Riaz, Ahmad, 2020. "Characteristics analysis of the photovoltaic thermal heat pump system on refrigeration mode: An experimental investigation," Renewable Energy, Elsevier, vol. 146(C), pages 2450-2461.
    3. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    4. Li, Guoliang & Han, Youhua & Li, Ming & Luo, Xi & Xu, Yongfeng & Wang, Yunfeng & Zhang, Ying, 2021. "Study on matching characteristics of photovoltaic disturbance and refrigeration compressor in solar photovoltaic direct-drive air conditioning system," Renewable Energy, Elsevier, vol. 172(C), pages 1145-1153.
    5. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    6. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    8. Thomas Bröthaler & Marcus Rennhofer & Daniel Brandl & Thomas Mach & Andreas Heinz & Gusztáv Újvári & Helga C. Lichtenegger & Harald Rennhofer, 2021. "Performance Analysis of a Facade-Integrated Photovoltaic Powered Cooling System," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    9. Maen Takruri & Maissa Farhat & Oscar Barambones & José Antonio Ramos-Hernanz & Mohammed Jawdat Turkieh & Mohammed Badawi & Hanin AlZoubi & Maswood Abdus Sakur, 2020. "Maximum Power Point Tracking of PV System Based on Machine Learning," Energies, MDPI, vol. 13(3), pages 1-14, February.
    10. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    11. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    12. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    13. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    14. Jamal, Taskin & Carter, Craig & Schmidt, Thomas & Shafiullah, G.M. & Calais, Martina & Urmee, Tania, 2019. "An energy flow simulation tool for incorporating short-term PV forecasting in a diesel-PV-battery off-grid power supply system," Applied Energy, Elsevier, vol. 254(C).
    15. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    16. Celena Lorenzo & Luis Narvarte & Ana Belén Cristóbal, 2020. "A Comparative Economic Feasibility Study of Photovoltaic Heat Pump Systems for Industrial Space Heating and Cooling," Energies, MDPI, vol. 13(16), pages 1-20, August.
    17. Luo, Yang & Li, Linlin & Chen, Yiping & Kim, Chang Nyung, 2022. "Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG," Energy, Elsevier, vol. 254(PC).
    18. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    19. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    20. Izquierdo, M. & González-Gil, A. & Palacios, E., 2014. "Solar-powered single-and double-effect directly air-cooled LiBr–H2O absorption prototype built as a single unit," Applied Energy, Elsevier, vol. 130(C), pages 7-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:953-965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.