An advanced moving-boundary method for the dynamic simulation of split heat pump system under start-up process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2025.125673
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Majumdar, Rudrodip & Singh, Suneet & Saha, Sandip K., 2018. "Quasi-steady state moving boundary reduced order model of two-phase flow for ORC refrigerant in solar-thermal heat exchanger," Renewable Energy, Elsevier, vol. 126(C), pages 830-843.
- Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2022. "Dynamic simulation model with virtual interfaces of supercritical working fluid heat exchanger based on moving boundary method," Energy, Elsevier, vol. 254(PB).
- Speerforck, Arne & Ling, Jiazhen & Aute, Vikrant & Radermacher, Reinhard & Schmitz, Gerhard, 2017. "Modeling and simulation of a desiccant assisted solar and geothermal air conditioning system," Energy, Elsevier, vol. 141(C), pages 2321-2336.
- Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
- Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2011. "Numerical simulation of a solar-assisted ejector air conditioning system with cold storage," Energy, Elsevier, vol. 36(2), pages 1280-1291.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wu, Di & Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Sun, Yan, 2024. "Experimental investigation and industrial application of a cascade air-source high temperature heat pump," Renewable Energy, Elsevier, vol. 232(C).
- Wang, Ruzhu & Yan, Hongzhi & Wu, Di & Jiang, Jiatong & Dong, Yixiu, 2024. "High temperature heat pumps for industrial heating processes using water as refrigerant," Energy, Elsevier, vol. 313(C).
- Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Tomc, Urban & Nosan, Simon & Vidrih, Boris & Bogić, Simon & Navickaite, Kristina & Vozel, Katja & Bobič, Miha & Kitanovski, Andrej, 2024. "Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation," Applied Energy, Elsevier, vol. 361(C).
- Guillermo Martínez-Rodríguez & Cristobal Díaz-de-León & Amanda L. Fuentes-Silva & Juan-Carlos Baltazar & Rafael García-Gutiérrez, 2023. "Detailed Thermo-Economic Assessment of a Heat Pump for Industrial Applications," Energies, MDPI, vol. 16(6), pages 1-12, March.
- Dai, Baomin & Liu, Xiao & Liu, Shengchun & Wang, Dabiao & Meng, Chenyang & Wang, Qi & Song, Yifan & Zou, Tonghua, 2022. "Life cycle performance evaluation of cascade-heating high temperature heat pump system for waste heat utilization: Energy consumption, emissions and financial analyses," Energy, Elsevier, vol. 261(PB).
- Jiang, Jiatong & Zhou, Yu & Ji, Fan & Wu, Di & Hu, Bin & Liu, Hua & Wang, RuZhu, 2024. "Internal thermal management cooling strategies for high-temperature heat pump," Energy, Elsevier, vol. 313(C).
- Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Elias Vieren & Toon Demeester & Wim Beyne & Chiara Magni & Hamed Abedini & Cordin Arpagaus & Stefan Bertsch & Alessia Arteconi & Michel De Paepe & Steven Lecompte, 2023. "The Potential of Vapor Compression Heat Pumps Supplying Process Heat between 100 and 200 °C in the Chemical Industry," Energies, MDPI, vol. 16(18), pages 1-28, September.
- Chen, Jianyong & Yang, Nuo & Deng, Mengqing & Chen, Ying & Luo, Xianglong & Liang, Yingzong & He, Jiacheng & Zhang, Yannan, 2025. "Manipulating large temperature glide of zeotropic mixture for ultra-high temperature heat pump (UHTHP): A comparative study," Energy, Elsevier, vol. 322(C).
- Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
- Feng, Chunyu & Guo, Cong & Chen, Junbin & Tan, Sicong & Jiang, Yuyan, 2024. "Thermodynamic analysis of a dual-pressure evaporation high-temperature heat pump with low GWP zeotropic mixtures for steam generation," Energy, Elsevier, vol. 294(C).
- Giménez-Prades, P. & Navarro-Esbrí, J. & Arpagaus, C. & Fernández-Moreno, A. & Mota-Babiloni, A., 2022. "Novel molecules as working fluids for refrigeration, heat pump and organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Andrea Zini & Luca Socci & Guglielmo Vaccaro & Andrea Rocchetti & Lorenzo Talluri, 2024. "Working Fluid Selection for High-Temperature Heat Pumps: A Comprehensive Evaluation," Energies, MDPI, vol. 17(7), pages 1-24, March.
- Zhang, Xi & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery," Energy, Elsevier, vol. 286(C).
- Wu, Di & Wei, Junzhuo & Hu, Bin, 2025. "Theoretical analysis, experimental research and industrial verification of high temperature heat pump based on R1233zd(E)," Energy, Elsevier, vol. 319(C).
- Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
- Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel, 2025. "Non-ideal effects assessment on organic vapor compressions using small radial turbocompressors for heat pump-based systems," Energy, Elsevier, vol. 314(C).
- Peter Nagovnak & Maedeh Rahnama Mobarakeh & Christian Diendorfer & Gregor Thenius & Hans Böhm & Thomas Kienberger, 2024. "Cost-Driven Assessment of Technologies’ Potential to Reach Climate Neutrality in Energy-Intensive Industries," Energies, MDPI, vol. 17(5), pages 1-34, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925004039. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.