IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125003957.html
   My bibliography  Save this article

Assessment of compressor control in photovoltaic-driven air conditioner based on dynamic programing

Author

Listed:
  • Li, Houpei
  • Huang, Cheng
  • Li, Sihui
  • Peng, Jinqing

Abstract

The demand for energy efficient and low carbon operation of air conditioning systems has increased significantly in recent years, driven by both rising global temperatures and the growing energy consumption of buildings. Photovoltaic-driven air conditioner (PVAC) systems utilize solar energy to power air conditioning, providing a sustainable solution to reduce building energy consumption and carbon emissions. In this study, a PVAC model, a resistance and capacitance building model, an air conditioning model and evaluators model are established and integrated into a comprehensive simulation framework. A dynamic programming (DP) strategy is developed for optimizing the operation of a photovoltaic-driven air conditioner, focusing on compressor speed scheduling to balance multiple objectives: minimizing operational costs and carbon emissions, maximizing PV self-consumption, and maintaining indoor thermal comfort. The DP algorithm successfully optimizes PVAC systems with the performance significantly influenced by evaluation indicators. Additionally, integrating photovoltaic generation with outdoor condition predictions further enhances PVAC system efficiency. The research highlights the capacity of DP-based compressor speed scheduling to achieve multiple objectives. The findings contribute to advancing predictive scheduling approaches for energy-efficient, sustainable building operations.

Suggested Citation

  • Li, Houpei & Huang, Cheng & Li, Sihui & Peng, Jinqing, 2025. "Assessment of compressor control in photovoltaic-driven air conditioner based on dynamic programing," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003957
    DOI: 10.1016/j.renene.2025.122733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125003957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Houpei & Li, Jun & Li, Sihui & Peng, Jinqing & Ji, Jie & Yan, Jinyue, 2023. "Matching characteristics and AC performance of the photovoltaic-driven air conditioning system," Energy, Elsevier, vol. 264(C).
    2. Li, Houpei & Zhang, Huifen & Zou, Bin & Peng, Jinqing, 2024. "A generalized study of photovoltaic driven air conditioning potential in cooling season in mainland China," Renewable Energy, Elsevier, vol. 223(C).
    3. Jiang, Zhimin & Cai, Jie & Moses, Paul S., 2020. "Smoothing control of solar photovoltaic generation using building thermal loads," Applied Energy, Elsevier, vol. 277(C).
    4. Zhao, B.Y. & Zhao, Z.G. & Li, Y. & Wang, R.Z. & Taylor, R.A., 2019. "An adaptive PID control method to improve the power tracking performance of solar photovoltaic air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    6. Tan, Yutong & Peng, Jinqing & Luo, Yimo & Li, Houpei & Wang, Meng & Zhang, Fujia & Ji, Jie & Song, Aotian, 2023. "Daylight-electrical-thermal coupling model for real-time zero-energy potential analysis of vacuum-photovoltaic glazing," Renewable Energy, Elsevier, vol. 205(C), pages 1040-1056.
    7. Triolo, Ryan C. & Rajagopal, Ram & Wolak, Frank A. & de Chalendar, Jacques A., 2023. "Estimating cooling demand flexibility in a district energy system using temperature set point changes from selected buildings," Applied Energy, Elsevier, vol. 336(C).
    8. Wang, Kai & Peng, Jinqing & Li, Sihui & Li, Houpei & Zou, Bin & Ma, Tao & Ji, Jie, 2024. "Compressor speed control for optimizing energy matching of PV-driven AC systems during the cooling season," Energy, Elsevier, vol. 298(C).
    9. Zhou, Hao & Yang, Hongxing & Peng, Jinqing, 2024. "Solar PV vacuum glazing (SVG) insulated building facades: Thermal and electrical performances," Applied Energy, Elsevier, vol. 376(PB).
    10. Lygouras, J.N. & Botsaris, P.N. & Vourvoulakis, J. & Kodogiannis, V., 2007. "Fuzzy logic controller implementation for a solar air-conditioning system," Applied Energy, Elsevier, vol. 84(12), pages 1305-1318, December.
    11. Han, Youhua & Li, Ming & Wang, Yunfeng & Li, Guoliang & Ma, Xun & Wang, Rui & Wang, Liang, 2019. "Impedance matching control strategy for a solar cooling system directly driven by distributed photovoltaics," Energy, Elsevier, vol. 168(C), pages 953-965.
    12. Zhou, Xiaoyan & Zhang, Ying & Ma, Xun & Li, Guoliang & Wang, Yunfeng & Hu, Chengzhi & Liang, Junyu & Li, Ming, 2022. "Performance characteristics of photovoltaic cold storage under composite control of maximum power tracking and constant voltage per frequency," Applied Energy, Elsevier, vol. 305(C).
    13. Tamás Storcz & Géza Várady & István Kistelegdi & Zsolt Ercsey, 2023. "Regression Models and Shape Descriptors for Building Energy Demand and Comfort Estimation," Energies, MDPI, vol. 16(16), pages 1-20, August.
    14. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    15. Yukai Zou & Zhuoxi Chen & Jialiang Guo & Yingsheng Zheng & Xiaolin Yang, 2024. "A data-driven framework for fast building energy demand estimation across future climate conditions," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 19, pages 628-641.
    16. Salpakari, Jyri & Lund, Peter, 2016. "Optimal and rule-based control strategies for energy flexibility in buildings with PV," Applied Energy, Elsevier, vol. 161(C), pages 425-436.
    17. Zou, Bin & Peng, Jinqing & Yin, Rongxin & Li, Houpei & Li, Sihui & Yan, Jinyue & Yang, Hongxing, 2022. "Capacity configuration of distributed photovoltaic and battery system for office buildings considering uncertainties," Applied Energy, Elsevier, vol. 319(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kai & Peng, Jinqing & Li, Sihui & Li, Houpei & Zou, Bin & Ma, Tao & Ji, Jie, 2024. "Compressor speed control for optimizing energy matching of PV-driven AC systems during the cooling season," Energy, Elsevier, vol. 298(C).
    2. Li, Houpei & Li, Jun & Li, Sihui & Peng, Jinqing & Ji, Jie & Yan, Jinyue, 2023. "Matching characteristics and AC performance of the photovoltaic-driven air conditioning system," Energy, Elsevier, vol. 264(C).
    3. Farhan Lafta Rashid & Muhammad Asmail Eleiwi & Hayder I. Mohammed & Arman Ameen & Shabbir Ahmad, 2023. "A Review of Using Solar Energy for Cooling Systems: Applications, Challenges, and Effects," Energies, MDPI, vol. 16(24), pages 1-34, December.
    4. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    5. Wang, Chuyao & Ji, Jie & Song, Zhiying & Ke, Wei, 2024. "Performance analysis and capacity configuration of building energy system integrated with PV/T technology under different operation strategies," Energy, Elsevier, vol. 293(C).
    6. He, Yecong & Sun, Jie & Deng, Qi & Zhang, Xiaofeng & Liu, Huaican & Wen, Ke & Zhou, Jifei, 2023. "Teaching building towards carbon neutrality: Power matching and economy of source-grid-load-storage system," Renewable Energy, Elsevier, vol. 218(C).
    7. Lu, Menglong & Wang, Zhihua & Ma, Zhenjun, 2024. "Hybrid solar-wind renewable energy systems with energy storage for net/nearly zero energy buildings: An uncertainty-based robust design method," Energy, Elsevier, vol. 313(C).
    8. Zhao, Hong & Li, Ming & Wang, Yunfeng & Zhang, Ying & Li, Guoliang, 2024. "Research on the characteristics of photovoltaic-driven refrigerated warehouse with ice storage in field under weather and load variation," Renewable Energy, Elsevier, vol. 235(C).
    9. Lu, Menglong & Sun, Yongjun & Ma, Zhenjun, 2024. "Multi-objective design optimization of multiple energy systems in net/nearly zero energy buildings under uncertainty correlations," Applied Energy, Elsevier, vol. 370(C).
    10. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    11. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    12. Gao, Yuhe & Ji, Jie & Han, Kedong & Zhang, Feng, 2021. "Experimental and numerical study of a PV/T direct-driven refrigeration/heating system," Energy, Elsevier, vol. 230(C).
    13. Muhammed Sait Aydin & Sahban W. Alnaser & Sereen Z. Althaher, 2022. "Using OLTC-Fitted Distribution Transformer to Increase Residential PV Hosting Capacity: Decentralized Voltage Management Approach," Energies, MDPI, vol. 15(13), pages 1-19, July.
    14. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    15. Pan, Zhongjie & Liu, Jia & Wu, Huijun & Luo, Diqian & Huang, Jialong, 2025. "Theoretical-experimental-simulation research on thermal-daylight-electrical performance of PV glazing in high-rise office building in the Greater Bay Area," Applied Energy, Elsevier, vol. 378(PA).
    16. He, Jiawei & Mu, Rui & Li, Bin & Li, Ye & Zhou, Bohao & Xie, Zhongrun & Wang, Wenbo, 2024. "Applicability boundary calculation for directional current protection in distribution networks with accessed PV power sources," Applied Energy, Elsevier, vol. 370(C).
    17. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    18. Yang, Fei & Xia, Xiaohua, 2017. "Techno-economic and environmental optimization of a household photovoltaic-battery hybrid power system within demand side management," Renewable Energy, Elsevier, vol. 108(C), pages 132-143.
    19. Tungom, Chia E. & Niu, Ben & Wang, Hong, 2025. "SWAPP: Swarm precision policy optimization with dynamic action bound adjustment for energy management in smart cities," Applied Energy, Elsevier, vol. 377(PA).
    20. Assareh, Ehsanolah & Hoseinzadeh, Siamak & Agarwal, Saurabh & keykhah, Mohammad & Agarwal, Neha & Heydari, Azim & Astiaso Garcia, Davide, 2025. "Assessment of a wind energy installation for powering a residential building in Rome, Italy: Incorporating wind turbines, compressed air energy storage, and a compression chiller based on a machine le," Energy, Elsevier, vol. 320(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.