IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp929-936.html
   My bibliography  Save this article

Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage

Author

Listed:
  • Yang, Haiyue
  • Wang, Yazhou
  • Yu, Qianqian
  • Cao, Guoliang
  • Sun, Xiaohan
  • Yang, Rue
  • Zhang, Qiong
  • Liu, Feng
  • Di, Xin
  • Li, Jian
  • Wang, Chengyu
  • Li, Guoliang

Abstract

Thermal energy storage is important for energy saving and social developing. Low-cost, high thermal conductivity, form-stable composite phase change materials are urgent in energy storage and management. In this work, a novel carbonized wood-based composite phase change materials (TDCW) are fabricated by impregnating of 1-tetradecanol (TD) into carbonized wood (CW). CW as supporting material exhibits porous three-dimensional (3D) structure, high specific surface area and high thermal conductivity. In addition, compared with conventional graphene, carbon nanotubes and other one-dimensional (1D) or two-dimensional (2D) carbon materials, CW is inexpensive and has higher loading content of 73.4 wt%. What's more, CW as supporting material is firstly used in composite phase change materials. According to differential scanning calorimetry measurement and thermogravimetric analysis, TDCW possesses high latent heat, good thermal reliability and favorable thermal stability. In addition, thermal conductivities of PW, CW, TDCW measured at axial direction are all higher than that at radial direction and the thermal conductivity of TDCW is 0.669 Wm−1K−1 at axial direction at 50 °C, which is 114% higher than that of pure TD. The results of thermal conductivity and surface temperature variation collected by infrared thermal camera under heating and cooling process demonstrate that TDCW is beneficial for thermal management application. This work not only provides a novel and superior supporting material, but also prepares a suitable phase change temperature, high latent heat and high thermal conductivity composite phase change material for thermal energy storage and management civil applications.

Suggested Citation

  • Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Sun, Xiaohan & Yang, Rue & Zhang, Qiong & Liu, Feng & Di, Xin & Li, Jian & Wang, Chengyu & Li, Guoliang, 2018. "Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage," Energy, Elsevier, vol. 159(C), pages 929-936.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:929-936
    DOI: 10.1016/j.energy.2018.06.207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218312726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Suling & Wu, Wei & Wang, Shuangfeng, 2017. "Preparation, thermal properties and thermal reliability of a novel mid-temperature composite phase change material for energy conservation," Energy, Elsevier, vol. 130(C), pages 228-235.
    2. Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2017. "Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials," Applied Energy, Elsevier, vol. 200(C), pages 19-27.
    3. Qian, Tingting & Li, Jinhong, 2018. "Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural–functional integrated cement for thermal energy storage," Energy, Elsevier, vol. 142(C), pages 234-249.
    4. Li, TingXian & Lee, Ju-Hyuk & Wang, RuZhu & Kang, Yong Tae, 2013. "Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes," Energy, Elsevier, vol. 55(C), pages 752-761.
    5. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xinghui & Zhu, Ziqi & Yang, Pei & You, Zhenping & Dong, Yue & Tang, Miao & Chen, Minzhi & Zhou, Xiaoyan, 2021. "Carbonized wood loaded with carbon dots for preparation long-term shape-stabilized composite phase change materials with superior thermal energy conversion capacity," Renewable Energy, Elsevier, vol. 174(C), pages 19-30.
    2. Lv, Laiquan & Wang, Jiankang & Ji, Mengting & Zhang, Yize & Huang, Shengyao & Cen, Kefa & Zhou, Hao, 2022. "Effect of structural characteristics and surface functional groups of biochar on thermal properties of different organic phase change materials: Dominant encapsulation mechanisms," Renewable Energy, Elsevier, vol. 195(C), pages 1238-1252.
    3. Chao, Weixiang & Yang, Haiyue & Cao, Guoliang & Sun, Xiaohan & Wang, Xin & Wang, Chengyu, 2020. "Carbonized wood flour matrix with functional phase change material composite for magnetocaloric-assisted photothermal conversion and storage," Energy, Elsevier, vol. 202(C).
    4. Mishra, Amit Kumar & Lahiri, B.B. & Philip, John, 2020. "Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage," Energy, Elsevier, vol. 191(C).
    5. Meysam Nazari & Mohamed Jebrane & Nasko Terziev, 2020. "Bio-Based Phase Change Materials Incorporated in Lignocellulose Matrix for Energy Storage in Buildings—A Review," Energies, MDPI, vol. 13(12), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
    2. Sun, Jingmeng & Zhao, Junqi & Zhang, Weiye & Xu, Jianuo & Wang, Beibei & Wang, Xuanye & Zhou, Jun & Guo, Hongwu & Liu, Yi, 2023. "Composites with a Novel Core–shell Structural Expanded Perlite/Polyethylene glycol Composite PCM as Novel Green Energy Storage Composites for Building Energy Conservation," Applied Energy, Elsevier, vol. 330(PA).
    3. Chao, Weixiang & Yang, Haiyue & Cao, Guoliang & Sun, Xiaohan & Wang, Xin & Wang, Chengyu, 2020. "Carbonized wood flour matrix with functional phase change material composite for magnetocaloric-assisted photothermal conversion and storage," Energy, Elsevier, vol. 202(C).
    4. Mishra, Amit Kumar & Lahiri, B.B. & Philip, John, 2020. "Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage," Energy, Elsevier, vol. 191(C).
    5. Han, Weifang & Ge, Chunhua & Zhang, Rui & Ma, Zhiyan & Wang, Lixia & Zhang, Xiangdong, 2019. "Boron nitride foam as a polymer alternative in packaging phase change materials: Synthesis, thermal properties and shape stability," Applied Energy, Elsevier, vol. 238(C), pages 942-951.
    6. Rajendran Prabakaran & Shaji Sidney & Dhasan Mohan Lal & C. Selvam & Sivasankaran Harish, 2019. "Solidification of Graphene-Assisted Phase Change Nanocomposites inside a Sphere for Cold Storage Applications," Energies, MDPI, vol. 12(18), pages 1-16, September.
    7. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    8. Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
    9. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    10. Li, Yanchen & Wang, Beibei & Zhang, Weiye & Zhao, Junqi & Fang, Xiaoyang & Sun, Jingmeng & Xia, Rongqi & Guo, Hongwu & Liu, Yi, 2022. "Processing wood into a phase change material with high solar-thermal conversion efficiency by introducing stable polyethylene glycol-based energy storage polymer," Energy, Elsevier, vol. 254(PA).
    11. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    12. Jiang, Liang & Lei, Yuan & Liu, Qinfeng & Lei, Jingxin, 2020. "Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage," Energy, Elsevier, vol. 193(C).
    13. Ur Rehman, Ata & Zhao, Tianyu & Shah, Muhammad Zahir & Khan, Yaqoob & Hayat, Asif & Dang, Changwei & Zheng, Maosheng & Yun, Sining, 2023. "Nanoengineering of MgSO4 nanohybrid on MXene substrate for efficient thermochemical heat storage material," Applied Energy, Elsevier, vol. 332(C).
    14. Yue, Gentian & Wang, Lei & Zhang, Xin'an & Wu, Jihuai & Jiang, Qiwei & Zhang, Weifeng & Huang, Miaoliang & Lin, Jianming, 2014. "Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells," Energy, Elsevier, vol. 67(C), pages 460-467.
    15. Geng, Xiaoye & Li, Wei & Yin, Qing & Wang, Yu & Han, Na & Wang, Ning & Bian, Junmin & Wang, Jianping & Zhang, Xingxiang, 2018. "Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity," Energy, Elsevier, vol. 159(C), pages 857-869.
    16. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    17. Abdelwaheb Trigui & Makki Abdelmouleh, 2023. "Improving the Heat Transfer of Phase Change Composites for Thermal Energy Storage by Adding Copper: Preparation and Thermal Properties," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    18. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: From component to device level performance through modelling," Renewable Energy, Elsevier, vol. 140(C), pages 140-151.
    19. Zhang, Ya & Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2020. "Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management," Applied Energy, Elsevier, vol. 264(C).
    20. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:929-936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.