IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v67y2014icp460-467.html
   My bibliography  Save this article

Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells

Author

Listed:
  • Yue, Gentian
  • Wang, Lei
  • Zhang, Xin'an
  • Wu, Jihuai
  • Jiang, Qiwei
  • Zhang, Weifeng
  • Huang, Miaoliang
  • Lin, Jianming

Abstract

In our present study, the composite film of MWCNTs/Ppy (multi-walled carbon nanotubes and polypyrrole) was proposed as CE (counter electrode) catalyst in DSSCs (dye-sensitized solar cells) to speed up the reduction of triiodide to iodide. The MWCNTs/Ppy composite film was synthesized and fabricated it on rigid fluorine-doped tin oxide substrates by using a facile electrochemical polymerization route, and served as CE in DSSCs. The unique structural characteristics including rough surface consisted of the numerous MWCNTs coated on Ppy nanoparticles guaranteed fast mass transport for the electrolyte, and enabled the MWCNTs/Ppy CE to speed up the reduction of triiodide to iodide. The electrochemical analyses came from cyclic voltammetry and electrochemical impedance spectroscopy revealed that the MWCNTs/Ppy CE possessed more excellent electrocatalytic activity, electrochemical stability and lower charge transfer resistance of 2.82 Ω cm2 in comparison with a sputtered-Pt CE. The DSSC assembled with the novel MWCNTs/Ppy CE exhibited a high light-electric conversion efficiency of 7.42% under the illumination of 100 mW cm−2, comparable to that of the DSSC based on sputtered-Pt electrode (6.85%). Therefore, the MWCNTs/Ppy composite film can be considered as a promising alternative CE for DSSC due to its high electrocatalytic performance and excellent electrochemical stability.

Suggested Citation

  • Yue, Gentian & Wang, Lei & Zhang, Xin'an & Wu, Jihuai & Jiang, Qiwei & Zhang, Weifeng & Huang, Miaoliang & Lin, Jianming, 2014. "Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells," Energy, Elsevier, vol. 67(C), pages 460-467.
  • Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:460-467
    DOI: 10.1016/j.energy.2014.01.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214000802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    2. Yue, Gentian & Wu, Jihuai & Xiao, Yaoming & Lin, Jianming & Huang, Miaoliang & Lan, Zhang & Fan, Leqing, 2013. "Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells," Energy, Elsevier, vol. 54(C), pages 315-321.
    3. Francis, L. & Sreekumaran Nair, A. & Jose, R. & Ramakrishna, S. & Thavasi, V. & Marsano, E., 2011. "Fabrication and characterization of dye-sensitized solar cells from rutile nanofibers and nanorods," Energy, Elsevier, vol. 36(1), pages 627-632.
    4. Li, TingXian & Lee, Ju-Hyuk & Wang, RuZhu & Kang, Yong Tae, 2013. "Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes," Energy, Elsevier, vol. 55(C), pages 752-761.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vicente-Gomila, J.M. & Artacho-Ramírez, M.A. & Ting, Ma & Porter, A.L., 2021. "Combining tech mining and semantic TRIZ for technology assessment: Dye-sensitized solar cell as a case," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    2. Wang, Yu-Chao & Cho, Chun-Pei, 2015. "Improved performance of dye-sensitized solar cells with patterned fluorine-doped tin oxide electrodes," Energy, Elsevier, vol. 89(C), pages 277-282.
    3. Alami, Abdul Hai & Rajab, Bilal & Abed, Jehad & Faraj, Mohammed & Hawili, Abdullah Abu & Alawadhi, Hussain, 2019. "Investigating various copper oxides-based counter electrodes for dye sensitized solar cell applications," Energy, Elsevier, vol. 174(C), pages 526-533.
    4. Karaköse, Ercan & Çolak, Hakan, 2017. "Structural and optical properties of ZnO nanorods prepared by spray pyrolysis method," Energy, Elsevier, vol. 140(P1), pages 92-97.
    5. Wang, Guanxi & Xiao, Wei & Yu, Jiaguo, 2015. "High-efficiency dye-sensitized solar cells based on electrospun TiO2 multi-layered composite film photoanodes," Energy, Elsevier, vol. 86(C), pages 196-203.
    6. Bandyopadhyay, Poonam & Nandy, Papiya & Basu, Ruma & Das, Sukhen, 2015. "Morphology dependent change in photovoltage generation using dye-Cu doped ZnO nanoparticle mixed system," Energy, Elsevier, vol. 89(C), pages 318-323.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guanxi & Xiao, Wei & Yu, Jiaguo, 2015. "High-efficiency dye-sensitized solar cells based on electrospun TiO2 multi-layered composite film photoanodes," Energy, Elsevier, vol. 86(C), pages 196-203.
    2. Rajendran Prabakaran & Shaji Sidney & Dhasan Mohan Lal & C. Selvam & Sivasankaran Harish, 2019. "Solidification of Graphene-Assisted Phase Change Nanocomposites inside a Sphere for Cold Storage Applications," Energies, MDPI, vol. 12(18), pages 1-16, September.
    3. Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
    4. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    5. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    6. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    8. Mehmood, Umer & Al-Ahmed, Amir & Afzaal, Mohammad & Al-Sulaiman, Fahad A. & Daud, Muhammad, 2017. "Recent progress and remaining challenges in organometallic halides based perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1-14.
    9. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    10. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Sun, Xiaohan & Yang, Rue & Zhang, Qiong & Liu, Feng & Di, Xin & Li, Jian & Wang, Chengyu & Li, Guoliang, 2018. "Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage," Energy, Elsevier, vol. 159(C), pages 929-936.
    11. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    12. Kyeong-Yoon Baek & Woocheol Lee & Jonghoon Lee & Jaeyoung Kim & Heebeom Ahn & Jae Il Kim & Junwoo Kim & Hyungbin Lim & Jiwon Shin & Yoon-Joo Ko & Hyeon-Dong Lee & Richard H. Friend & Tae-Woo Lee & Jeo, 2022. "Mechanochemistry-driven engineering of 0D/3D heterostructure for designing highly luminescent Cs–Pb–Br perovskites," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Cauda, Valentina & Pugliese, Diego & Garino, Nadia & Sacco, Adriano & Bianco, Stefano & Bella, Federico & Lamberti, Andrea & Gerbaldi, Claudio, 2014. "Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures," Energy, Elsevier, vol. 65(C), pages 639-646.
    14. René Itten & Matthias Stucki, 2017. "Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts," Energies, MDPI, vol. 10(7), pages 1-18, June.
    15. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    16. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    17. Gao, Huan & Bing, Naici & Xie, Huaqing & Yu, Wei, 2022. "Energy harvesting and storage blocks based on 3D oriented expanded graphite and stearic acid with high thermal conductivity for solar thermal application," Energy, Elsevier, vol. 254(PA).
    18. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    19. Tao, Y.B. & Carey, V.P., 2016. "Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit," Applied Energy, Elsevier, vol. 179(C), pages 203-210.
    20. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:460-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.