IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v98y2025i4d10.1140_epjb_s10051-025-00918-1.html
   My bibliography  Save this article

Structural and electronic properties of CaTiO3 polymorphs and 2D-derived systems: a theoretical investigation

Author

Listed:
  • Marta Loletti

    (Università degli Studi di Perugia
    Institut de Ciència de Materials de Barcelona, ICMAB–CSIC)

  • Costanza Borghesi

    (Università degli Studi di Perugia
    CNR-Istituto Nanoscienze
    University of Perugia)

  • Riccardo Rurali

    (Institut de Ciència de Materials de Barcelona, ICMAB–CSIC)

  • Giacomo Giorgi

    (Università degli Studi di Perugia
    CNR-Istituto Nanoscienze
    University of Perugia
    CNR-SCITEC)

Abstract

Oxide perovskite materials exhibit intriguing optical and electrical properties that are widely exploited in ceramics and optoelectronic devices. With particular emphasis on its application for photocatalysis, this study aims to theoretically characterize the structural and electronic features of CaTiO3, both as a stand-alone material and as a possible component in heterostructures. By means of a campaign of ab-initio calculations, we have revised the polymorphic nature of the material through an extensive analysis of its structural and electronic properties. Although standard DFT clearly confirms its intrinsic underestimation in predicting the excited state properties, by applying the recently introduced DFT $$-\frac{1}{2}$$ - 1 2 method to the bandgap and dispersion calculations, we find very good agreement with experimental reported data. Finally, we include the investigation of dimensionally reduced CaTiO3-based surfaces and nanosheets, opening the way to interesting possibilities for additional novel supports and photocatalysts with unique features. Graphical abstract

Suggested Citation

  • Marta Loletti & Costanza Borghesi & Riccardo Rurali & Giacomo Giorgi, 2025. "Structural and electronic properties of CaTiO3 polymorphs and 2D-derived systems: a theoretical investigation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(4), pages 1-13, April.
  • Handle: RePEc:spr:eurphb:v:98:y:2025:i:4:d:10.1140_epjb_s10051-025-00918-1
    DOI: 10.1140/epjb/s10051-025-00918-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-025-00918-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-025-00918-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yue, Gentian & Wang, Lei & Zhang, Xin'an & Wu, Jihuai & Jiang, Qiwei & Zhang, Weifeng & Huang, Miaoliang & Lin, Jianming, 2014. "Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells," Energy, Elsevier, vol. 67(C), pages 460-467.
    3. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    4. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    5. René Itten & Matthias Stucki, 2017. "Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts," Energies, MDPI, vol. 10(7), pages 1-18, June.
    6. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.
    7. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
    9. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    10. Serrano-Luján, Lucía & Espinosa, Nieves & Abad, Jose & Urbina, Antonio, 2017. "The greenest decision on photovoltaic system allocation," Renewable Energy, Elsevier, vol. 101(C), pages 1348-1356.
    11. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    12. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    13. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    14. Pao-Hsun Huang & Yeong-Her Wang & Jhong-Ciao Ke & Chien-Jung Huang, 2017. "The Effect of Solvents on the Performance of CH 3 NH 3 PbI 3 Perovskite Solar Cells," Energies, MDPI, vol. 10(5), pages 1-8, April.
    15. Marwa. S. Salem & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Adwan Alanazi & Mohammad T. Alshammari & Christian Gontand, 2021. "Analysis of Hybrid Hetero-Homo Junction Lead-Free Perovskite Solar Cells by SCAPS Simulator," Energies, MDPI, vol. 14(18), pages 1-22, September.
    16. Syed Afaq Ali Shah & Muhammad Hassan Sayyad & Karim Khan & Kai Guo & Fei Shen & Jinghua Sun & Ayesha Khan Tareen & Yubin Gong & Zhongyi Guo, 2020. "Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells," Energies, MDPI, vol. 13(19), pages 1-42, September.
    17. Ju, Sucheol & Choi, Seung Ju & Sung, Hansang & Kim, Minjin & Song, Ji Won & Choi, In Woo & Kim, Hak-Beom & Jo, Yimhyun & Lee, Sangwook & Yoon, Seog-Young & Kim, Dong Suk & Lee, Heon, 2024. "High-performance and selective semi-transparent perovskite solar cells using 3D-structured FTO," Renewable Energy, Elsevier, vol. 222(C).
    18. Ouedraogo, Nabonswende Aida Nadege & Odunmbaku, George Omololu & Ouyang, Yunfei & Xiong, Xiqiu & Guo, Bing & Chen, Shanshan & Lu, Shirong & Sun, Kuan, 2024. "Eco-friendly processing of perovskite solar cells in ambient air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Jamal, M.S. & Bashar, M.S. & Hasan, A.K. Mahmud & Almutairi, Zeyad A. & Alharbi, Hamad F. & Alharthi, Nabeel H. & Karim, Mohammad R. & Misran, H. & Amin, Nowshad & Sopian, Kamaruzzaman Bin & Akhtaruzz, 2018. "Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 469-488.
    20. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:98:y:2025:i:4:d:10.1140_epjb_s10051-025-00918-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.