IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics0360544219324971.html
   My bibliography  Save this article

Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage

Author

Listed:
  • Jiang, Liang
  • Lei, Yuan
  • Liu, Qinfeng
  • Lei, Jingxin

Abstract

Except for the improvement enthalpy value and thermal conductivity of conventional solid-solid phase change materials (SSPCMs), expansion of additional functions other than thermal energy storage function of that has been particularly attractive. In this work, a novel self-luminous SSPCMs based polyethylene glycol have been successfully synthesized via incorporation of long afterglow luminescence (LAL) particles into SSPCMs in the absence of any isocyanates and solvents. The prepared self-luminous SSPCMs have high melting latent heats with a maximum value at 120.2 J g−1, maximum encapsulation ratio of 80.6%, and a suitable phase change temperature around 28 °C. Importantly, the prepared self-luminous SSPCMs with different concentrations of LAL particles can absorb and store visible light sources in the daylight but can slowly release blue light in the dark over a long time. Furthermore, the prepared self-luminous SSPCMs after thermal cycling tests and storing-releasing light energy cycling tests have preeminent thermal reliability, luminescence repeatability and chemical structure reliability for a long time practical application.

Suggested Citation

  • Jiang, Liang & Lei, Yuan & Liu, Qinfeng & Lei, Jingxin, 2020. "Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324971
    DOI: 10.1016/j.energy.2019.116802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geng, Xiaoye & Li, Wei & Wang, Yu & Lu, Jiangwei & Wang, Jianping & Wang, Ning & Li, Jianjie & Zhang, Xingxiang, 2018. "Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing," Applied Energy, Elsevier, vol. 217(C), pages 281-294.
    2. Lin, Yaxue & Zhu, Chuqiao & Alva, Guruprasad & Fang, Guiyin, 2018. "Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1801-1809.
    3. Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
    4. Yu, Qinghua & Tchuenbou-Magaia, Fideline & Al-Duri, Bushra & Zhang, Zhibing & Ding, Yulong & Li, Yongliang, 2018. "Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage," Applied Energy, Elsevier, vol. 211(C), pages 1190-1202.
    5. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    6. Zhang, Yuang & Wang, Lingjuan & Tang, Bingtao & Lu, Rongwen & Zhang, Shufen, 2016. "Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure," Applied Energy, Elsevier, vol. 184(C), pages 241-246.
    7. Rojas-Hernandez, Rocío Estefanía & Rubio-Marcos, Fernando & Rodriguez, Miguel Ángel & Fernandez, José Francisco, 2018. "Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2759-2770.
    8. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    9. Wang, Chaoming & Chen, Ke & Huang, Jun & Cai, Zhengyu & Hu, Zhanjiang & Wang, Tingjun, 2019. "Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives," Energy, Elsevier, vol. 180(C), pages 873-880.
    10. Zhang, Yuang & Wang, Jiasheng & Qiu, Jinjing & Jin, Xin & Umair, Malik Muhammad & Lu, Rongwen & Zhang, Shufen & Tang, Bingtao, 2019. "Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity," Applied Energy, Elsevier, vol. 237(C), pages 83-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Sheng & Ocłoń, Paweł & Klemeš, Jiří Jaromír & Michorczyk, Piotr & Pielichowska, Kinga & Pielichowski, Krzysztof, 2022. "Renewable energy systems for building heating, cooling and electricity production with thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Li, Jiayin & Hu, Xiaowu & Zhang, Chuge & Luo, Wenxing & Jiang, Xiongxin, 2021. "Enhanced thermal performance of phase-change materials supported by mesoporous silica modified with polydopamine/nano-metal particles for thermal energy storage," Renewable Energy, Elsevier, vol. 178(C), pages 118-127.
    3. Fu, Xiaowei & Lei, Yuan & Xiao, Yao & Wang, Jiliang & Zhou, Shiyi & Lei, Jingxin, 2021. "Graft poly(ethylene glycol)-based thermosetting phase change materials networks with ultrahigh encapsulation fraction and latent heat efficiency," Renewable Energy, Elsevier, vol. 179(C), pages 1076-1084.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    2. Paul, John & Pandey, A.K. & Mishra, Yogeshwar Nath & Said, Zafar & Mishra, Yogendra Kumar & Ma, Zhenjun & Jacob, Jeeja & Kadirgama, K. & Samykano, M. & Tyagi, V.V., 2022. "Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: Recent progresses, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Bashiri Rezaie, Ali & Montazer, Majid, 2020. "Shape-stable thermo-responsive nano Fe3O4/fatty acids/PET composite phase-change material for thermal energy management and saving applications," Applied Energy, Elsevier, vol. 262(C).
    4. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Zhang, Hongyun & Wang, Lingling & Xi, Shaobo & Xie, Huaqing & Yu, Wei, 2021. "3D porous copper foam-based shape-stabilized composite phase change materials for high photothermal conversion, thermal conductivity and storage," Renewable Energy, Elsevier, vol. 175(C), pages 307-317.
    6. Li, Chuan & Li, Qi & Cong, Lin & jiang, Feng & Zhao, Yanqi & Liu, Chuanping & Xiong, Yaxuan & Chang, Chun & Ding, Yulong, 2019. "MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properti," Applied Energy, Elsevier, vol. 250(C), pages 81-91.
    7. Zhang, Ya & Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2020. "Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management," Applied Energy, Elsevier, vol. 264(C).
    8. Yang, Haiyue & Wang, Siyuan & Wang, Xin & Chao, Weixiang & Wang, Nan & Ding, Xiaolun & Liu, Feng & Yu, Qianqian & Yang, Tinghan & Yang, Zhaolin & Li, Jian & Wang, Chengyu & Li, Guoliang, 2020. "Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage," Applied Energy, Elsevier, vol. 261(C).
    9. Meysam Nazari & Mohamed Jebrane & Nasko Terziev, 2020. "Bio-Based Phase Change Materials Incorporated in Lignocellulose Matrix for Energy Storage in Buildings—A Review," Energies, MDPI, vol. 13(12), pages 1-25, June.
    10. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    11. Bing, Naici & Yang, Jie & Gao, Huan & Xie, Huaqing & Yu, Wei, 2021. "Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion," Renewable Energy, Elsevier, vol. 173(C), pages 926-933.
    12. Chen, Changzhong & Chen, Rong & Zhao, Tangyuan & Wang, Linge, 2022. "A comparative study of linear polyurea and crosslinked polyurea as supports to stabilize polyethylene glycol for thermal energy storage," Renewable Energy, Elsevier, vol. 183(C), pages 535-547.
    13. Cheng, Jiaji & Niu, Shaoshuai & Kang, Moyun & Liu, Yuqi & Zhang, Feng & Qu, Wenjuan & Guan, Yu & Li, Shaoxiang, 2022. "The thermal behavior and flame retardant performance of phase change material microcapsules with modified carbon nanotubes," Energy, Elsevier, vol. 240(C).
    14. Li, Xinghui & Zhu, Ziqi & Yang, Pei & You, Zhenping & Dong, Yue & Tang, Miao & Chen, Minzhi & Zhou, Xiaoyan, 2021. "Carbonized wood loaded with carbon dots for preparation long-term shape-stabilized composite phase change materials with superior thermal energy conversion capacity," Renewable Energy, Elsevier, vol. 174(C), pages 19-30.
    15. Li, Chuan & Li, Qi & Li, Yongliang & She, Xiaohui & Cao, Hui & Zhang, Peikun & Wang, Li & Ding, Yulong, 2019. "Heat transfer of composite phase change material modules containing a eutectic carbonate salt for medium and high temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 238(C), pages 1074-1083.
    16. Chen, Renjie & Huang, Xinyu & Deng, Weibin & Zheng, Ruizhi & Aftab, Waseem & Shi, Jinmin & Xie, Delong & Zou, Ruqiang & Mei, Yi, 2020. "Facile preparation of flexible eicosane/SWCNTs phase change films via colloid aggregation for thermal energy storage," Applied Energy, Elsevier, vol. 260(C).
    17. Yafang Zhang & Jiebin Tang & Jialin Chen & Yuhai Zhang & Xiangxiang Chen & Meng Ding & Weijia Zhou & Xijin Xu & Hong Liu & Guobin Xue, 2023. "Accelerating the solar-thermal energy storage via inner-light supplying with optical waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Tao, Jialu & Luan, Jingde & Liu, Yue & Qu, Daoyu & Yan, Zheng & Ke, Xin, 2022. "Technology development and application prospects of organic-based phase change materials: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).
    20. Wu, Taofen & Wu, Dan & Deng, Yong & Luo, Dajun & Wu, Fuzhong & Dai, Xinyi & Lu, Jia & Sun, Shuya, 2024. "Three-dimensional network-based composite phase change materials: Construction, structure, performance and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.