IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p2759-2770.html
   My bibliography  Save this article

Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material

Author

Listed:
  • Rojas-Hernandez, Rocío Estefanía
  • Rubio-Marcos, Fernando
  • Rodriguez, Miguel Ángel
  • Fernandez, José Francisco

Abstract

The aim of this review is to present the progress in preparing phosphorescent particles based on the reported research. We highlight the recent progress on SrAl2O4: Eu, Dy particles by describing the advantages and disadvantages of the different synthesis methods. This long-lasting material combines several favorable attributes: is stable, efficient, and less toxic that their predecessors. For that, large attention has been paid to the development of an efficient preparation method of SrAl2O4 doped powders, including sol-gel method, hydrothermal synthesis, laser synthesis, combustion synthesis and solid state reaction. However, many of these techniques are not compatible with large-scale production and with the principles of sustainability. Industrial processing of highly crystalline powders usually requires high synthesis temperatures, typically between 1300 and 1900°C, with long processing times, especially for solid state reaction. As a result, the average particle size is typically within the 20–100µm range. This large particle size is limiting for current applications that demand sub-micron particles. The microstructure and size which are controlled through adjusting the experimental conditions have a great influence in the final photoluminescence response. Therefore, much effort has been devoted to exploring new strategies to obtain sub–micrometric particles, avoiding stringent, intricate, tedious, costly, or inefficient preparation steps and intrinsic toxicity or elemental scarcity. Moreover, persistent luminescent nanomaterials have attracted great interest to their potential application in solar cells, biological labeling and imaging and security encode. In addition, we describe the challenges and future of phosphorescent materials in regard to their synthesis, properties and applications. Finally, some further suggestions have been also addressed to enhance its photoluminescence response from the perspective of the synthesis. We believe that such a review can accelerate the developments of SrAl2O4-based materials.

Suggested Citation

  • Rojas-Hernandez, Rocío Estefanía & Rubio-Marcos, Fernando & Rodriguez, Miguel Ángel & Fernandez, José Francisco, 2018. "Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2759-2770.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2759-2770
    DOI: 10.1016/j.rser.2017.06.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117310262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.06.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pawade, V.B. & Swart, H.C. & Dhoble, S.J., 2015. "Review of rare earth activated blue emission phosphors prepared by combustion synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 596-612.
    2. Singh, Devesh & Basu, Chandrajit & Meinhardt-Wollweber, Merve & Roth, Bernhard, 2015. "LEDs for energy efficient greenhouse lighting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 139-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabiani, Claudia & Chiatti, Chiara & Pisello, Anna Laura, 2021. "Development of photoluminescent composites for energy efficiency in smart outdoor lighting applications: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 172(C), pages 1-15.
    2. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Jiang, Liang & Lei, Yuan & Liu, Qinfeng & Lei, Jingxin, 2020. "Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage," Energy, Elsevier, vol. 193(C).
    4. Chiatti, Chiara & Fabiani, Claudia & Cotana, Franco & Pisello, Anna Laura, 2021. "Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials’ optimization," Energy, Elsevier, vol. 231(C).
    5. Fabiani, Claudia & Gambucci, Marta & Chiatti, Chiara & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2022. "Towards field implementation of photoluminescence in the built environment for passive cooling and lighting energy efficiency," Applied Energy, Elsevier, vol. 324(C).
    6. Adriana H. Martínez & Teresa López-Montero & Rodrigo Miró & Ricard Puig, 2023. "Photoluminescent Applications for Urban Pavements," Sustainability, MDPI, vol. 15(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Dannehl & Thomas Schwend & Daniel Veit & Uwe Schmidt, 2021. "LED versus HPS Lighting: Effects on Water and Energy Consumption and Yield Quality in Lettuce Greenhouse Production," Sustainability, MDPI, vol. 13(15), pages 1-11, August.
    2. Chiara Burattini & Benedetta Mattoni & Fabio Bisegna, 2017. "The Impact of Spectral Composition of White LEDs on Spinach ( Spinacia oleracea ) Growth and Development," Energies, MDPI, vol. 10(9), pages 1-14, September.
    3. Danilo Loconsole & Giacomo Cocetta & Piero Santoro & Antonio Ferrante, 2019. "Optimization of LED Lighting and Quality Evaluation of Romaine Lettuce Grown in An Innovative Indoor Cultivation System," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    4. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    5. Teodor Rusu & Reed John Cowden & Paula Ioana Moraru & Mihai Avram Maxim & Bhim Bahadur Ghaley, 2021. "Overview of Multiple Applications of Basil Species and Cultivars and the Effects of Production Environmental Parameters on Yields and Secondary Metabolites in Hydroponic Systems," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    6. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    7. Nima Asgari & Matthew T. McDonald & Joshua M. Pearce, 2023. "Energy Modeling and Techno-Economic Feasibility Analysis of Greenhouses for Tomato Cultivation Utilizing the Waste Heat of Cryptocurrency Miners," Energies, MDPI, vol. 16(3), pages 1-42, January.
    8. Amaresh Sarkar & Mrinmoy Majumder, 2019. "Economic of a six-story stacked protected farm structure," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1075-1089, June.
    9. Latifa Bachouch & Neermalsing Sewraj & Pascal Dupuis & Laurent Canale & Georges Zissis & Lotfi Bouslimi & Lilia El Amraoui, 2021. "An Approach for Designing Mixed Light-Emitting Diodes to Match Greenhouse Plant Absorption Spectra," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    10. Sungwoo Lee & Sungho Tae & Hyungjae Jang & Chang U. Chae & Youngjin Bok, 2021. "Development of Building Information Modeling Template for Environmental Impact Assessment," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    11. Wang, Tianyue & Wu, Gaoxiang & Chen, Jiewei & Cui, Peng & Chen, Zexi & Yan, Yangyang & Zhang, Yan & Li, Meicheng & Niu, Dongxiao & Li, Baoguo & Chen, Hongyi, 2017. "Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1178-1188.
    12. Ivan Paucek & Elisa Appolloni & Giuseppina Pennisi & Stefania Quaini & Giorgio Gianquinto & Francesco Orsini, 2020. "LED Lighting Systems for Horticulture: Business Growth and Global Distribution," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    13. Sungwoo Lee & Sungho Tae, 2020. "Development of a Decision Support Model Based on Machine Learning for Applying Greenhouse Gas Reduction Technology," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    14. Sungkyun Ha & Sungho Tae & Rakhyun Kim, 2019. "A Study on the Limitations of South Korea’s National Roadmap for Greenhouse Gas Reduction by 2030 and Suggestions for Improvement," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    15. Gianluca Serale & Luca Gnoli & Emanuele Giraudo & Enrico Fabrizio, 2021. "A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses," Energies, MDPI, vol. 14(1), pages 1-19, January.
    16. Jacqualine A Thomas & Mikhail Vasiliev & Mohammad Nur-E-Alam & Kamal Alameh, 2020. "Increasing the Yield of Lactuca sativa , L. in Glass Greenhouses through Illumination Spectral Filtering and Development of an Optical Thin Film Filter," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    17. Lankamsetty Krishna Bharat & Harishkumarreddy Patnam & Alexander Sokolov & Sergey V. Gudkov & Jae Su Yu, 2022. "Red Light Emitting Transition Metal Ion Doped Calcium Antimony Oxide for Plant Growth Lighting Applications," Agriculture, MDPI, vol. 12(12), pages 1-10, December.
    18. Xuedong Liang & Meng Ye & Li Yang & Wanbing Fu & Zhi Li, 2018. "Evaluation and Policy Research on the Sustainable Development of China’s Rare Earth Resources," Sustainability, MDPI, vol. 10(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2759-2770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.