IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp1393-1401.html
   My bibliography  Save this article

Spatiotemporal variability in building energy use in New York City

Author

Listed:
  • Olivo, Y.
  • Hamidi, A.
  • Ramamurthy, P.

Abstract

Data on building energy use for large and dense cities is not yet available at adequate spatial and temporal scales. The energy consumption from buildings significantly influences the local climate and this impact is not adequately integrated into regional or local scale weather models. The primary objective of his study is to understand and map building energy consumption and quantify its impact on the urban environment; here, New York City (NYC) is used as a test case. The project involved a detailed classification of buildings in NYC using a high-resolution landuse/landcover dataset. The customized classification was then coupled with a single building energy model (SBEM) to estimate the building energy use. The developed model matched the annual energy use of NYC within 5% of the observed value. Coupled energy simulations were then performed with the Weather Research and Forecasting (WRF) model. The results show that heat released from building's heating and air conditioning system during extreme heat events can be as high as 18% of the overall available energy. Finally, a comparison between the average annual energy use, the urban heat island intensity (UHI) and the landcover/landuse fraction for various parcels during extreme heat events indicated that neighborhoods surrounding the highly-commercialized zones were disproportionately impacted by high UHI values. The increase was related to advection of heat.

Suggested Citation

  • Olivo, Y. & Hamidi, A. & Ramamurthy, P., 2017. "Spatiotemporal variability in building energy use in New York City," Energy, Elsevier, vol. 141(C), pages 1393-1401.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1393-1401
    DOI: 10.1016/j.energy.2017.11.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217319266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piet Eichholtz & Nils Kok & John M. Quigley, 2010. "Doing Well by Doing Good? Green Office Buildings," American Economic Review, American Economic Association, vol. 100(5), pages 2492-2509, December.
    2. Hou, Jing & Liu, Yisheng & Wu, Yong & Zhou, Nan & Feng, Wei, 2016. "Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China," Energy Policy, Elsevier, vol. 88(C), pages 204-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Tuo, Junbo & Liu, Fei & Liu, Peiji & Zhang, Hua & Cai, Wei, 2018. "Energy efficiency evaluation for machining systems through virtual part," Energy, Elsevier, vol. 159(C), pages 172-183.
    3. Chen, Yibo & Wu, Jianzhong, 2018. "Distribution patterns of energy consumed in classified public buildings through the data mining process," Applied Energy, Elsevier, vol. 226(C), pages 240-251.
    4. Job Taminiau & John Byrne, 2020. "City‐scale urban sustainability: Spatiotemporal mapping of distributed solar power for New York City," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    5. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    6. Wenliang Li, 2020. "Quantifying the Building Energy Dynamics of Manhattan, New York City, Using an Urban Building Energy Model and Localized Weather Data," Energies, MDPI, vol. 13(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayani Saha & Rahul B Hiremath & Sanjay Prasad & Bimlesh Kumar, 2021. "Barriers to Adoption of Commercial Green Buildings in India: A Review," Journal of Infrastructure Development, India Development Foundation, vol. 13(2), pages 107-128, December.
    2. Curtis, Jim & Walton, Andrea & Dodd, Michael, 2017. "Understanding the potential of facilities managers to be advocates for energy efficiency retrofits in mid-tier commercial office buildings," Energy Policy, Elsevier, vol. 103(C), pages 98-104.
    3. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    4. Jihwan Yeon & Seoki Lee & Phillip M Jolly & Anna S Mattila, 2023. "The impact of environmental management on firm performance in the U.S. lodging REITs: The moderating role of outside board of directors," Tourism Economics, , vol. 29(2), pages 513-532, March.
    5. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    6. Maya M. Papineau, 2015. "Setting the Standard: Commercial Electricity Consumption Responses to Energy Codes," Carleton Economic Papers 15-05, Carleton University, Department of Economics.
    7. Michal Gluszak & Remigiusz Gawlik & Malgorzata Zieba, 2019. "Smart and Green Buildings Features in the Decision-Making Hierarchy of Office Space Tenants: An Analytic Hierarchy Process Study," Administrative Sciences, MDPI, vol. 9(3), pages 1-16, July.
    8. Wang, Moran & Li, Xuerong & Wang, Shouyang, 2021. "Discovering research trends and opportunities of green finance and energy policy: A data-driven scientometric analysis," Energy Policy, Elsevier, vol. 154(C).
    9. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    10. Hui-Ching Hsieh & Viona Claresta & Thi Minh Ngoc Bui, 2020. "Green Building, Cost of Equity Capital and Corporate Governance: Evidence from US Real Estate Investment Trusts," Sustainability, MDPI, vol. 12(9), pages 1-21, May.
    11. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    12. Vimpari, Jussi & Junnila, Seppo, 2017. "Evaluating decentralized energy investments: Spatial value of on-site PV electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1217-1222.
    13. Homroy, Swarnodeep, 2023. "GHG emissions and firm performance: The role of CEO gender socialization," Journal of Banking & Finance, Elsevier, vol. 148(C).
    14. Guorong Chen & Changyan Liu, 2023. "Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    15. Chegut, Andrea & Eichholtz, Piet & Kok, Nils, 2019. "The price of innovation: An analysis of the marginal cost of green buildings," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    16. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    17. Jeroen Heijden, 2014. "Experimentation in policy design: insights from the building sector," Policy Sciences, Springer;Society of Policy Sciences, vol. 47(3), pages 249-266, September.
    18. Wenbin Sun & Shanji Yao & Rahul Govind, 2019. "Reexamining Corporate Social Responsibility and Shareholder Value: The Inverted-U-Shaped Relationship and the Moderation of Marketing Capability," Journal of Business Ethics, Springer, vol. 160(4), pages 1001-1017, December.
    19. Eichholtz, Piet & Holtermans, Rogier & Kok, Nils & Yönder, Erkan, 2019. "Environmental performance and the cost of debt: Evidence from commercial mortgages and REIT bonds," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 19-32.
    20. Guangyang Chen & Kai Dong & Shaonan Wang & Xiuli Du & Ronghua Zhou & Zhongwei Yang, 2022. "The Dynamic Relationship among Bank Credit, House Prices and Carbon Dioxide Emissions in China," IJERPH, MDPI, vol. 19(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1393-1401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.