IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v127y2017icp155-166.html
   My bibliography  Save this article

Greenhouse gas mitigation using poultry litter management techniques in Bangladesh

Author

Listed:
  • Mainali, Brijesh
  • Emran, Saad Been
  • Silveira, Semida

Abstract

Poultry activities have expanded significantly in Bangladesh in recent years. The litter generated from rural poultry farms is often dumped in low ground neighboring areas resulting in greenhouse gas emissions, as well as water and air pollution. This study estimates the GHG emissions of a typical rural layer poultry farm in Bangladesh, and identifies the GHG emissions reduction potential when poultry litter management techniques are used to produce biogas, generating electricity and bio-fertilizer. Life-cycle assessment (LCA) has been used for a systematic evaluation of GHG-emissions considering the local supply chain in a typical rural layer poultry farm. The analysis shows that the GHG-emissions at the poultry farm amount to 1735 KgCO2eq/10000 eggs produced if the litter is untreated. With the installation of an anaerobic digester, the emission intensity could be reduced by 65% if the gas is used to replace LPG for cooking purposes. If 100% digested slurry is utilized as bio-fertilizer, the emissions intensity could be further reduced by 17 times compared to the case without slurry utilization. These results justify the consideration of national programs to improve conditions in poultry farms in Bangladesh.

Suggested Citation

  • Mainali, Brijesh & Emran, Saad Been & Silveira, Semida, 2017. "Greenhouse gas mitigation using poultry litter management techniques in Bangladesh," Energy, Elsevier, vol. 127(C), pages 155-166.
  • Handle: RePEc:eee:energy:v:127:y:2017:i:c:p:155-166
    DOI: 10.1016/j.energy.2017.03.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217304863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bala, B.K. & Hossain, M.M., 1992. "Economics of biogas digesters in Bangladesh," Energy, Elsevier, vol. 17(10), pages 939-944.
    2. Bhattacharya, S.C. & Thomas, Jossy M. & Abdul Salam, P., 1997. "Greenhouse gas emissions and the mitigation potential of using animal wastes in Asia," Energy, Elsevier, vol. 22(11), pages 1079-1085.
    3. Khan, Ershad Ullah & Martin, Andrew R., 2015. "Optimization of hybrid renewable energy polygeneration system with membrane distillation for rural households in Bangladesh," Energy, Elsevier, vol. 93(P1), pages 1116-1127.
    4. Khatiwada, Dilip & Silveira, Semida, 2009. "Net energy balance of molasses based ethanol: The case of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2515-2524, December.
    5. Sovacool, Benjamin K. & Drupady, Ira Martina, 2011. "Summoning earth and fire: The energy development implications of Grameen Shakti (GS) in Bangladesh," Energy, Elsevier, vol. 36(7), pages 4445-4459.
    6. Rahman, Khondokar M. & Woodard, Ryan & Manzanares, Elizabeth & Harder, Marie K., 2014. "An assessment of anaerobic digestion capacity in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 762-769.
    7. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Khan, M.Z.H. & Sarker, M., 2016. "Feasibility analysis of implementing anaerobic digestion as a potential energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 124-134.
    8. Fiala, Nathan, 2008. "Meeting the demand: An estimation of potential future greenhouse gas emissions from meat production," Ecological Economics, Elsevier, vol. 67(3), pages 412-419, October.
    9. Pelletier, N., 2008. "Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions," Agricultural Systems, Elsevier, vol. 98(2), pages 67-73, September.
    10. Biswas, Wahidul K. & Lucas, N.J.D., 1997. "Economic viability of biogas technology in a Bangladesh village," Energy, Elsevier, vol. 22(8), pages 763-770.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    2. Md. Monirul Islam Chowdhury & Syed Masiur Rahman & Ismaila Rimi Abubakar & Yusuf A. Aina & Md. Arif Hasan & A. N. Khondaker, 2021. "A review of policies and initiatives for climate change mitigation and environmental sustainability in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1133-1161, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    2. Bekchanov, Maksud & Mondal, Md. Alam Hossain & de Alwis, Ajith & Mirzabaev, Alisher, 2019. "Why adoption is slow despite promising potential of biogas technology for improving energy security and mitigating climate change in Sri Lanka?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 378-390.
    3. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    4. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    5. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    6. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    7. Stanistreet Debbi & Puzzolo Elisa & Bruce Nigel & Pope Dan & Rehfuess Eva, 2014. "Factors Influencing Household Uptake of Improved Solid Fuel Stoves in Low- and Middle-Income Countries: A Qualitative Systematic Review," IJERPH, MDPI, vol. 11(8), pages 1-23, August.
    8. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Hoffman, Eric & Cavigelli, Michel A. & Camargo, Gustavo & Ryan, Matthew & Ackroyd, Victoria J. & Richard, Tom L. & Mirsky, Steven, 2018. "Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows," Agricultural Systems, Elsevier, vol. 162(C), pages 89-96.
    10. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    11. Silveira, Semida & Khatiwada, Dilip, 2010. "Ethanol production and fuel substitution in Nepal--Opportunity to promote sustainable development and climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1644-1652, August.
    12. Caroline Ignell & Peter Davies & Cecilia Lundholm, 2013. "Swedish Upper Secondary School Students’ Conceptions of Negative Environmental Impact and Pricing," Sustainability, MDPI, vol. 5(3), pages 1-15, March.
    13. Joshi, Lalita & Choudhary, Deepak & Kumar, Praveen & Venkateswaran, Jayendran & Solanki, Chetan S., 2019. "Does involvement of local community ensure sustained energy access? A critical review of a solar PV technology intervention in rural India," World Development, Elsevier, vol. 122(C), pages 272-281.
    14. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    15. Emiko Fukase & Will Martin, 2016. "Who Will Feed China in the 21st Century? Income Growth and Food Demand and Supply in China," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(1), pages 3-23, February.
    16. Haiying Shao & Bowen Li & Yanjun Jiang, 2023. "Effect and Mechanism of Environmental Decentralization on Pollution Emission from Pig Farming—Evidence from China," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    17. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    18. Johnson, Nathan G. & Bryden, Kenneth M., 2012. "Energy supply and use in a rural West African village," Energy, Elsevier, vol. 43(1), pages 283-292.
    19. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Power generation from sugarcane biomass – A complementary option to hydroelectricity in Nepal and Brazil," Energy, Elsevier, vol. 48(1), pages 241-254.
    20. Raymond L. Desjardins & Devon E. Worth & Xavier P. C. Vergé & Dominique Maxime & Jim Dyer & Darrel Cerkowniak, 2012. "Carbon Footprint of Beef Cattle," Sustainability, MDPI, vol. 4(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:127:y:2017:i:c:p:155-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.