IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v42y2012icp49-58.html
   My bibliography  Save this article

Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues

Author

Listed:
  • Shackley, Simon
  • Carter, Sarah
  • Knowles, Tony
  • Middelink, Erik
  • Haefele, Stephan
  • Sohi, Saran
  • Cross, Andrew
  • Haszeldine, Stuart

Abstract

Biochar is a carbon- and energy-rich porous material produced through slow pyrolysis of biomass, which has been proposed as a way of storing carbon in soils for the long-term (centurial to millennial timescales) but its production incurs an energy penalty. Gasification of rice husks at paddy mills combines the benefits of reasonably efficient delivery of energy with a reasonably high carbon char and ash mixture. The ca. 35% carbon content of the rice husk char is possibly a consequence of the protective shield of silica, preventing full exposure of the biomass to oxidation in the gasifier. In this paper we undertake an evaluation of the sustainability of this ‘gasification–biochar system’ (GBS) in Cambodia, where a rapid deployment of gasifiers is underway. In Part I, we describe the context and analyse (some of) the physical and chemical properties of the biochar. While there are some potential health, safety and environmental issues that require further analysis, they are problems that could be readily addressed in further research and appear to be resolvable. In Part II, we present results from field trials, summarise the data on the carbon abatement of the gasification–biochar system and present some preliminary economic data.

Suggested Citation

  • Shackley, Simon & Carter, Sarah & Knowles, Tony & Middelink, Erik & Haefele, Stephan & Sohi, Saran & Cross, Andrew & Haszeldine, Stuart, 2012. "Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues," Energy Policy, Elsevier, vol. 42(C), pages 49-58.
  • Handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:49-58
    DOI: 10.1016/j.enpol.2011.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511009037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    2. Hammond, Jim & Shackley, Simon & Sohi, Saran & Brownsort, Peter, 2011. "Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK," Energy Policy, Elsevier, vol. 39(5), pages 2646-2655, May.
    3. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pode, Ramchandra & Diouf, Boucar & Pode, Gayatri, 2015. "Sustainable rural electrification using rice husk biomass energy: A case study of Cambodia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 530-542.
    2. Hong Nam Nguyen & Minh Ha-Duong, 2014. "Rice husk gasification for electricity generation in Cambodia in December 2014," CIRED Working Papers hal-01107615, HAL.
    3. Kwofie, E.M. & Ngadi, M., 2016. "Sustainable energy supply for local rice parboiling in West Africa: The potential of rice husk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1409-1418.
    4. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    5. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
    6. Theeba Manickam & Gerard Cornelissen & Robert T. Bachmann & Illani Z. Ibrahim & Jan Mulder & Sarah E. Hale, 2015. "Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons," Sustainability, MDPI, Open Access Journal, vol. 7(12), pages 1-15, December.
    7. repec:gam:jsusta:v:7:y:2015:i:12:p:16756-16770:d:60882 is not listed on IDEAS
    8. Ndindeng, Sali Atanga & Wopereis, Marco & Sanyang, Sidi & Futakuchi, Koichi, 2019. "Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa," Renewable Energy, Elsevier, vol. 139(C), pages 924-935.
    9. Nadaleti, Willian Cézar, 2019. "Utilization of residues from rice parboiling industries in southern Brazil for biogas and hydrogen-syngas generation: Heat, electricity and energy planning," Renewable Energy, Elsevier, vol. 131(C), pages 55-72.
    10. Bazargan, Alireza & Bazargan, Majid & McKay, Gordon, 2015. "Optimization of rice husk pretreatment for energy production," Renewable Energy, Elsevier, vol. 77(C), pages 512-520.
    11. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauri Leppäkoski & Miika P. Marttila & Ville Uusitalo & Jarkko Levänen & Vilma Halonen & Mirja H. Mikkilä, 2021. "Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland," Sustainability, MDPI, Open Access Journal, vol. 13(18), pages 1-18, September.
    2. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
    3. Shackley, Simon & Carter, Sarah & Knowles, Tony & Middelink, Erik & Haefele, Stephan & Haszeldine, Stuart, 2012. "Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions," Energy Policy, Elsevier, vol. 41(C), pages 618-623.
    4. Mark W Rosegrant & Gary Yohe & Mandy Ewing & Rowena Valmonte-Santos & Tingju Zhu & Ian Burton & Saleemul Huq, 2010. "Climate Change and Asian Agriculture," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 7(1), pages 41-81, June.
    5. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    6. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    7. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    8. Lotze-Campen, Hermann & von Witzke, Harald & Noleppa, Steffen & Schwarz, Gerald, 2015. "Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany," Agricultural Systems, Elsevier, vol. 136(C), pages 79-84.
    9. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    10. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(S1), pages 33-39.
    11. Brian Wright, 2014. "Global Biofuels: Key to the Puzzle of Grain Market Behavior," Journal of Economic Perspectives, American Economic Association, vol. 28(1), pages 73-98, Winter.
    12. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    13. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
    14. repec:dau:papers:123456789/10752 is not listed on IDEAS
    15. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    16. Acquaye, Adolf A. & Sherwen, Tomás & Genovese, Andrea & Kuylenstierna, Johan & Lenny Koh, SC & McQueen-Mason, Simon, 2012. "Biofuels and their potential to aid the UK towards achieving emissions reduction policy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5414-5422.
    17. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    18. repec:fpr:ifprib:2012ghienglish is not listed on IDEAS
    19. Withey, Patrick & van Kooten, G. Cornelis, 2014. "Wetlands Retention and Optimal Management of Waterfowl Habitat under Climate Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(1), pages 1-18, April.
    20. Jones, Carol Adaire & Nickerson, Cynthia J. & Heisey, Paul W., 2012. "New Uses of Old Tools: An Assessment of Current and Potential Agricultural Greenhouse Gas Mitigation with Sector-based Policies," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124735, Agricultural and Applied Economics Association.
    21. Abdul-Manan, Amir F.N. & Baharuddin, Azizan & Chang, Lee Wei, 2015. "Application of theory-based evaluation for the critical analysis of national biofuel policy: A case study in Malaysia," Evaluation and Program Planning, Elsevier, vol. 52(C), pages 39-49.
    22. Baral, Nabin & Rabotyagov, Sergey, 2017. "How much are wood-based cellulosic biofuels worth in the Pacific Northwest? Ex-ante and ex-post analysis of local people's willingness to pay," Forest Policy and Economics, Elsevier, vol. 83(C), pages 99-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:49-58. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.