IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i5p2343-2351.html
   My bibliography  Save this article

Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process

Author

Listed:
  • Xu, Gang
  • Yang, Yong-ping
  • Lu, Shi-yuan
  • Li, Le
  • Song, Xiaona

Abstract

In China, coal-fired power plants are the main supplier of electricity, as well as the largest consumer of coal and water resources and the biggest emitter of SOx, NOx, and greenhouse gases (GHGs). Therefore, it is important to establish a scientific, reasonable, and feasible comprehensive evaluation system for coal-fired power plants to guide them in achieving multi-optimisation of their thermal, environmental, and economic performance. This paper proposes a novel comprehensive evaluation method, which is based on a combination of the grey relational analysis (GRA) and the analytic hierarchy process (AHP), to assess the multi-objective performance of power plants. Unlike the traditional evaluation method that uses coal consumption as a basic indicator, the proposed evaluation method also takes water consumption and pollutant emissions as indicators. On the basis of the proposed evaluation method, a case study on typical 600Â MW coal-fired power plants is carried out to determine the relevancy rules among factors including the coal consumption, water consumption, pollutant, and GHG emissions of power plants. This research offers new ideas and methods for the comprehensive performance evaluation of complex energy utilisation systems, and is beneficial to the synthesised consideration of resources, economy, and environment factors in system optimising and policy making.

Suggested Citation

  • Xu, Gang & Yang, Yong-ping & Lu, Shi-yuan & Li, Le & Song, Xiaona, 2011. "Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process," Energy Policy, Elsevier, vol. 39(5), pages 2343-2351, May.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2343-2351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(11)00065-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process," Energy Policy, Elsevier, vol. 37(3), pages 788-798, March.
    2. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhang, Xu-Tao & Shi, Guo-Hua, 2008. "Integrated evaluation of distributed triple-generation systems using improved grey incidence approach," Energy, Elsevier, vol. 33(9), pages 1427-1437.
    3. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng & Xie, Naiming, 2010. "The relation between Chinese economic development and energy consumption in the different periods," Energy Policy, Elsevier, vol. 38(9), pages 5189-5198, September.
    4. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    5. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    6. Lee, Deok Joo & Hwang, Jooho, 2010. "Decision support for selecting exportable nuclear technology using the analytic hierarchy process: A Korean case," Energy Policy, Elsevier, vol. 38(1), pages 161-167, January.
    7. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2007. "Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process," Energy Policy, Elsevier, vol. 35(8), pages 4027-4038, August.
    8. Lin, Sue J. & Lu, I.J. & Lewis, Charles, 2007. "Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan," Energy Policy, Elsevier, vol. 35(3), pages 1948-1955, March.
    9. Kim, Sang-Hoon, 2007. "Evaluation of negative environmental impacts of electricity generation: Neoclassical and institutional approaches," Energy Policy, Elsevier, vol. 35(1), pages 413-423, January.
    10. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2008. "Grey relation analysis of motor vehicular energy consumption in Taiwan," Energy Policy, Elsevier, vol. 36(7), pages 2556-2561, July.
    11. Greening, Lorna A. & Bernow, Steve, 2004. "Design of coordinated energy and environmental policies: use of multi-criteria decision-making," Energy Policy, Elsevier, vol. 32(6), pages 721-735, April.
    12. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process," Energy Policy, Elsevier, vol. 37(3), pages 778-787, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yıldız, Nurdan & Tüysüz, Fatih, 2019. "A hybrid multi-criteria decision making approach for strategic retail location investment: Application to Turkish food retailing," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    2. Rui Zhao & Han Su & Xiaolang Chen & Yanni Yu, 2016. "Commercially Available Materials Selection in Sustainable Design: An Integrated Multi-Attribute Decision Making Approach," Sustainability, MDPI, vol. 8(1), pages 1-15, January.
    3. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    4. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    5. Chunning Na & Huan Pan & Yuhong Zhu & Jiahai Yuan & Lixia Ding & Jungang Yu, 2019. "The Flexible Operation of Coal Power and Its Renewable Integration Potential in China," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    6. Olawale Ogunrinde & Ekundayo Shittu, 2023. "Benchmarking performance of photovoltaic power plants in multiple periods," Environment Systems and Decisions, Springer, vol. 43(3), pages 489-503, September.
    7. Wang, Guotao & Liao, Qi & Zhang, Haoran & Liang, Yongtu, 2022. "How government policies promote bioenergy’s permeability in national-level energy supply chain: A case of China," Applied Energy, Elsevier, vol. 324(C).
    8. Chongwatpol, Jongsawas & Phurithititanapong, Thanrawee, 2014. "Applying analytics in the energy industry: A case study of heat rate and opacity prediction in a coal-fired power plant," Energy, Elsevier, vol. 75(C), pages 463-473.
    9. Huang, Chao & Dai, Chong & Guo, Miao, 2015. "A hybrid approach using two-level DEA for financial failure prediction and integrated SE-DEA and GCA for indicators selection," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 431-441.
    10. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    11. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    12. Tuncay Ozcan & Fatih Tuysuz, 2016. "Modified Grey Relational Analysis Integrated with Grey Dematel Approach for the Performance Evaluation of Retail Stores," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 353-386, March.
    13. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    14. Larson, Eric D. & Kreutz, Thomas G. & Greig, Chris & Williams, Robert H. & Rooney, Tim & Gray, Edward & Elsido, Cristina & Martelli, Emanuele & Meerman, Johannes C., 2020. "Design and analysis of a low-carbon lignite/biomass-to-jet fuel demonstration project," Applied Energy, Elsevier, vol. 260(C).
    15. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
    16. Muhammad Ansori Nasution & Ayu Wulandari & Tofael Ahamed & Ryozo Noguchi, 2020. "Alternative POME Treatment Technology in the Implementation of Roundtable on Sustainable Palm Oil, Indonesian Sustainable Palm Oil (ISPO), and Malaysian Sustainable Palm Oil (MSPO) Standards Using LCA," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    17. Wang, Zhaoxia & Zhu, Han & Ding, Yan & Zhu, Tianli & Zhu, Neng & Tian, Zhe, 2018. "Energy efficiency evaluation of key energy consumption sectors in China based on a macro-evaluating system," Energy, Elsevier, vol. 153(C), pages 65-79.
    18. Zaman, Rafia & Brudermann, Thomas & Kumar, S. & Islam, Nazrul, 2018. "A multi-criteria analysis of coal-based power generation in Bangladesh," Energy Policy, Elsevier, vol. 116(C), pages 182-192.
    19. Yiqun Shang & Dongya Liu & Yi Chen, 2022. "Evaluation of Urban Intensive Land Use Degree with GEE Support: A Case Study in the Pearl River Delta Region, China," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    20. Wang, Hai-Chao & Jiao, Wen-Ling & Lahdelma, Risto & Zou, Ping-Hua, 2011. "Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation," Energy Policy, Elsevier, vol. 39(12), pages 7950-7962.
    21. Hanif Malekpoor & Konstantinos Chalvatzis & Nishikant Mishra & Mukesh Kumar Mehlawat & Dimitrios Zafirakis & Malin Song, 2018. "Integrated grey relational analysis and multi objective grey linear programming for sustainable electricity generation planning," Annals of Operations Research, Springer, vol. 269(1), pages 475-503, October.
    22. Wang, Haichao & Duanmu, Lin & Lahdelma, Risto & Li, Xiangli, 2017. "Developing a multicriteria decision support framework for CHP based combined district heating systems," Applied Energy, Elsevier, vol. 205(C), pages 345-368.
    23. Kadier, Abudukeremu & Abdeshahian, Peyman & Simayi, Yibadatihan & Ismail, Manal & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2015. "Grey relational analysis for comparative assessment of different cathode materials in microbial electrolysis cells," Energy, Elsevier, vol. 90(P2), pages 1556-1562.
    24. Hashemi, Seyed Hamid & Karimi, Amir & Tavana, Madjid, 2015. "An integrated green supplier selection approach with analytic network process and improved Grey relational analysis," International Journal of Production Economics, Elsevier, vol. 159(C), pages 178-191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    2. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    3. Tsita, Katerina G. & Pilavachi, Petros A., 2013. "Evaluation of next generation biomass derived fuels for the transport sector," Energy Policy, Elsevier, vol. 62(C), pages 443-455.
    4. Yagmur, Levent, 2016. "Multi-criteria evaluation and priority analysis for localization equipment in a thermal power plant using the AHP (analytic hierarchy process)," Energy, Elsevier, vol. 94(C), pages 476-482.
    5. Shen, Yung-Chi & Lin, Grace T.R. & Li, Kuang-Pin & Yuan, Benjamin J.C., 2010. "An assessment of exploiting renewable energy sources with concerns of policy and technology," Energy Policy, Elsevier, vol. 38(8), pages 4604-4616, August.
    6. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    7. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    8. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2008. "Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process," Energy Policy, Elsevier, vol. 36(3), pages 1074-1089, March.
    9. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    10. Zhang, Weishi & Wang, Can & Zhang, Long & Xu, Ying & Cui, Yuanzheng & Lu, Zifeng & Streets, David G., 2018. "Evaluation of the performance of distributed and centralized biomass technologies in rural China," Renewable Energy, Elsevier, vol. 125(C), pages 445-455.
    11. Wanyu Wang & Haochen Li & Xueliang Hou & Qian Zhang & Songfeng Tian, 2021. "Multi-Criteria Evaluation of Distributed Energy System Based on Order Relation-Anti-Entropy Weight Method," Energies, MDPI, vol. 14(1), pages 1-16, January.
    12. Mourmouris, J.C. & Potolias, C., 2013. "A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece," Energy Policy, Elsevier, vol. 52(C), pages 522-530.
    13. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    14. Yang, Kun & Ding, Yan & Zhu, Neng & Yang, Fan & Wang, Qiaochu, 2018. "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," Applied Energy, Elsevier, vol. 229(C), pages 352-363.
    15. Atmaca, Ediz & Basar, Hasan Burak, 2012. "Evaluation of power plants in Turkey using Analytic Network Process (ANP)," Energy, Elsevier, vol. 44(1), pages 555-563.
    16. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    17. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
    18. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    19. Shiyi Chen & Wei Chen & Ahsanullah Soomro & Lijuan Luo & Wenguo Xiang, 2020. "Multi-objective economic emission dispatch of thermal power plants based on grey relational analysis and analytic hierarchy process," Energy & Environment, , vol. 31(5), pages 785-812, August.
    20. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2343-2351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.