IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i7p2546-2559.html
   My bibliography  Save this article

Decision on optimal building energy efficiency standard in China--The case for Tianjin

Author

Listed:
  • Li, Jun
  • Colombier, Michel
  • Giraud, Pierre-Noël

Abstract

This paper investigates the optimal choice of building energy efficiency (BEE) standard in the context of centralised urban district heating system in northern China. By employing a techno-economic analysis approach, we demonstrate that the current BEE standard implemented in the Chinese cities should be tightened further in order to achieve a socially optimal level. Without considering the externality costs associated with carbon dioxide (CO2) emissions, current BEE standards need to be upgraded to the equivalent level of French RT2005 standard coupled with a properly designed district coal-fired Combined Heat and Power (CHP). In contrast, the equivalent efficiency standard of Swedish building code is preferably to be implemented in the case of explicit carbon emission restriction as long as the marginal cost of carbon emission (carbon price) is sufficiently high. The fuel-switching policy (from coal to natural gas) in the urban district heating system would result in significant increase in overall costs if the BEE upgrade is not taken into account simultaneously. It is also found that BEE improvements in northern Chinese cities are more cost-effective than investing in low-carbon technologies such as wind power or Carbon Capture and storage in the EU and US with regard to CO2 emissions mitigation.

Suggested Citation

  • Li, Jun & Colombier, Michel & Giraud, Pierre-Noël, 2009. "Decision on optimal building energy efficiency standard in China--The case for Tianjin," Energy Policy, Elsevier, vol. 37(7), pages 2546-2559, July.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:7:p:2546-2559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00046-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
    2. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, May.
    3. Jeffrey A. Dubin & Allen K. Miedema & Ram V. Chandran, 1986. "Price Effects of Energy-Efficient Technologies: A Study of Residential Demand for Heating and Cooling," RAND Journal of Economics, The RAND Corporation, vol. 17(3), pages 310-325, Autumn.
    4. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    5. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    6. Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
    7. Li, Jun, 2008. "Towards a low-carbon future in China's building sector--A review of energy and climate models forecast," Energy Policy, Elsevier, vol. 36(5), pages 1736-1747, May.
    8. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    9. Blanco, Mari­a Isabel & Rodrigues, Glória, 2008. "Can the future EU ETS support wind energy investments?," Energy Policy, Elsevier, vol. 36(4), pages 1509-1520, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
    2. Jie, Dingfei & Xu, Xiangyang & Guo, Fei, 2021. "The future of coal supply in China based on non-fossil energy development and carbon price strategies," Energy, Elsevier, vol. 220(C).
    3. Lo, Kevin, 2013. "Energy conservation in China's higher educationinstitutions," Energy Policy, Elsevier, vol. 56(C), pages 703-710.
    4. Modeste, Kameni Nematchoua & Mempouo, Blaise & René, Tchinda & Costa, Ángel M. & Orosa, José A. & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson, 2015. "Resource potential and energy efficiency in the buildings of Cameroon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 835-846.
    5. Yuan, Jiahai & Xu, Yan & Hu, Zhaoguang, 2012. "Delivering power system transition in China," Energy Policy, Elsevier, vol. 50(C), pages 751-772.
    6. Xu, Peng & Xu, Tengfang & Shen, Pengyuan, 2013. "Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?," Energy Policy, Elsevier, vol. 52(C), pages 667-676.
    7. Yuan, Jiahai & Xu, Yan & Hu, Zhen & Yu, Zhongfu & Liu, Jiangyan & Hu, Zhaoguang & Xu, Ming, 2012. "Managing electric power system transition in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5660-5677.
    8. Rui Dai & Jianxiong Zhang & Shichen Zhang, 2019. "Standard Setting with Considerations of Energy Efficiency Evolution and Market Competition," Complexity, Hindawi, vol. 2019, pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence H. Goulder & Roberton C. Williams, 2012. "The Choice Of Discount Rate For Climate Change Policy Evaluation," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-18.
    2. Matthew Adler & David Anthoff & Valentina Bosetti & Greg Garner & Klaus Keller & Nicolas Treich, 2016. "Priority for the Worse Off and the Social Cost of Carbon," CESifo Working Paper Series 6032, CESifo.
    3. Weyant John, 2014. "Integrated assessment of climate change: state of the literature," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 377-409, December.
    4. Baum, Seth D., 2009. "Description, prescription and the choice of discount rates," Ecological Economics, Elsevier, vol. 69(1), pages 197-205, November.
    5. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    6. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    7. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    8. Johansson, R. & Meyer, S. & Whistance, J. & Thompson, W. & Debnath, D., 2020. "Greenhouse gas emission reduction and cost from the United States biofuels mandate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    10. Mattoo, Aaditya & Subramanian, Arvind, 2012. "Equity in Climate Change: An Analytical Review," World Development, Elsevier, vol. 40(6), pages 1083-1097.
    11. Yohe, Gary W. & Tol, Richard S. J. & Anthoff, David, 2009. "Discounting for Climate Change," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 3, pages 1-22.
    12. Foley, Duncan K. & Rezai, Armon & Taylor, Lance, 2013. "The social cost of carbon emissions: Seven propositions," Economics Letters, Elsevier, vol. 121(1), pages 90-97.
    13. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    14. Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
    15. Robert S. Pindyck, 2011. "Modeling the Impact of Warming in Climate Change Economics," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 47-71, National Bureau of Economic Research, Inc.
    16. Kari Hyytiäinen & Lassi Ahlvik & Heini Ahtiainen & Janne Artell & Anni Huhtala & Kim Dahlbo, 2015. "Policy Goals for Improved Water Quality in the Baltic Sea: When do the Benefits Outweigh the Costs?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 217-241, June.
    17. Tol, Richard S. J., 2011. "Modified Ramsey Discounting for Climate Change," Papers WP368, Economic and Social Research Institute (ESRI).
    18. Vincent Martinet & Pedro Gajardo & Michel De Lara & Héctor Ramírez Cabrera, 2011. "Bargaining with intertemporal maximin payoffs," EconomiX Working Papers 2011-7, University of Paris Nanterre, EconomiX.
    19. Johansson-Stenman, Olof, 2010. "Risk aversion and expected utility of consumption over time," Games and Economic Behavior, Elsevier, vol. 68(1), pages 208-219, January.
    20. Freeman, Mark C. & Groom, Ben, 2016. "How certain are we about the certainty-equivalent long term social discount rate?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 152-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:7:p:2546-2559. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.