IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i7p2469-2474.html
   My bibliography  Save this article

What energy levels can the Earth sustain?

Author

Listed:
  • Moriarty, Patrick
  • Honnery, Damon

Abstract

Several official reports on future global primary energy production and use develop scenarios which suggest that the high energy growth rates of the 20th century will continue unabated until 2050 and even beyond. In this paper we examine whether any combination of fossil, nuclear, and renewable energy sources can deliver such levels of primary energy--around 1000Â EJ in 2050. We find that too much emphasis has been placed on whether or not reserves in the case of fossil and nuclear energy, or technical potential in the case of renewable energy, can support the levels of energy use forecast. In contrast, our analysis stresses the crucial importance of the interaction of technical potentials for annual production with environmental factors, social, political, and economic concerns and limited time frames for implementation, in heavily constraining the real energy options for the future. Together, these constraints suggest that future energy consumption will be significantly lower than the present level.

Suggested Citation

  • Moriarty, Patrick & Honnery, Damon, 2009. "What energy levels can the Earth sustain?," Energy Policy, Elsevier, vol. 37(7), pages 2469-2474, July.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:7:p:2469-2474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00154-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayres, Robert U., 2008. "Sustainability economics: Where do we stand?," Ecological Economics, Elsevier, vol. 67(2), pages 281-310, September.
    2. Moriarty, Patrick & Honnery, Damon, 2008. "Mitigating greenhouse: Limited time, limited options," Energy Policy, Elsevier, vol. 36(4), pages 1251-1256, April.
    3. Patrick Moriarty & Damon Honnery, 2007. "Global bioenergy: problems and prospects," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 27(2), pages 231-249.
    4. Feltrin, Andrea & Freundlich, Alex, 2008. "Material considerations for terawatt level deployment of photovoltaics," Renewable Energy, Elsevier, vol. 33(2), pages 180-185.
    5. Abbasi, S. A. & Abbasi, Naseema, 2000. "The likely adverse environmental impacts of renewable energy sources," Applied Energy, Elsevier, vol. 65(1-4), pages 121-144, April.
    6. Nel, Willem P. & Cooper, Christopher J., 2009. "Implications of fossil fuel constraints on economic growth and global warming," Energy Policy, Elsevier, vol. 37(1), pages 166-180, January.
    7. Schiffer, Hans-Wilhelm, 2008. "WEC energy policy scenarios to 2050," Energy Policy, Elsevier, vol. 36(7), pages 2464-2470, July.
    8. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davidsson, Simon & Grandell, Leena & Wachtmeister, Henrik & Höök, Mikael, 2014. "Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy," Energy Policy, Elsevier, vol. 73(C), pages 767-776.
    2. Moriarty, Patrick & Honnery, Damon, 2010. "A human needs approach to reducing atmospheric carbon," Energy Policy, Elsevier, vol. 38(2), pages 695-700, February.
    3. Zografakis, Nikolaos & Sifaki, Elli & Pagalou, Maria & Nikitaki, Georgia & Psarakis, Vasilios & Tsagarakis, Konstantinos P., 2010. "Assessment of public acceptance and willingness to pay for renewable energy sources in Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1088-1095, April.
    4. Moriarty, Patrick & Honnery, Damon, 2011. "Is there an optimum level for renewable energy?," Energy Policy, Elsevier, vol. 39(5), pages 2748-2753, May.
    5. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    6. repec:gam:jeners:v:8:y:2015:i:11:p:12997-13020:d:58940 is not listed on IDEAS
    7. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2013. "Global solar electric potential: A review of their technical and sustainable limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 824-835.
    8. Brook, Barry W., 2012. "Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case," Energy Policy, Elsevier, vol. 42(C), pages 4-8.
    9. Trainer, Ted, 2010. "Can renewables etc. solve the greenhouse problem? The negative case," Energy Policy, Elsevier, vol. 38(8), pages 4107-4114, August.
    10. F. Tchanche, Bertrand & Pétrissans, M. & Papadakis, G., 2014. "Heat resources and organic Rankine cycle machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1185-1199.
    11. Onat, Nevzat & Bayar, Haydar, 2010. "The sustainability indicators of power production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3108-3115, December.
    12. Pickard, William F., 2010. "Finessing the fuel: Revisiting the challenge of radioactive waste disposal," Energy Policy, Elsevier, vol. 38(2), pages 709-714, February.
    13. Friedrichs, Jörg, 2010. "Global energy crunch: How different parts of the world would react to a peak oil scenario," Energy Policy, Elsevier, vol. 38(8), pages 4562-4569, August.
    14. Carey W. King, 2015. "Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives," Energies, MDPI, Open Access Journal, vol. 8(11), pages 1-24, November.
    15. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    16. Trainer, Ted, 2012. "Can Australia run on renewable energy? The negative case," Energy Policy, Elsevier, vol. 50(C), pages 306-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:7:p:2469-2474. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.