IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v56y2011i1p56-65.html
   My bibliography  Save this article

Considerations of resource availability in technology development strategies: The case study of photovoltaics

Author

Listed:
  • Zuser, Anton
  • Rechberger, Helmut

Abstract

Photovoltaic (PV) technologies have experienced considerable growth rates of up to 70% in the last years. This has been possible because of low total CO2 emissions and a positive overall energy balance for PV. Several institutions have developed future scenarios which show an increase in global electricity demand from 17000TWh in 2005 to some 60000TWh by 2050. A significant part of this amount should be supplied by PV installations. Based on selected scenarios material demand is calculated for four different PV technologies: crystalline silicon (c-Si), amorphous silicon (a-Si) in tandem configuration, cadmium tellurium (CdTe) and copper indium gallium diselenide (CIGS). As these technologies use rare metals it is shown, that particular scenarios are unlikely to be realized because of supply constraints and scarcity phenomena. Critical materials are silver, tellurium and indium. We consider photovoltaics as an appropriate example for the implementation of resource availability considerations into technology development strategies.

Suggested Citation

  • Zuser, Anton & Rechberger, Helmut, 2011. "Considerations of resource availability in technology development strategies: The case study of photovoltaics," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 56-65.
  • Handle: RePEc:eee:recore:v:56:y:2011:i:1:p:56-65
    DOI: 10.1016/j.resconrec.2011.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344911001753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fthenakis, Vasilis, 2009. "Sustainability of photovoltaics: The case for thin-film solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2746-2750, December.
    2. van Sark, W.G.J.H.M. & Brandsen, G.W. & Fleuster, M. & Hekkert, M.P., 2007. "Analysis of the silicon market: Will thin films profit?," Energy Policy, Elsevier, vol. 35(6), pages 3121-3125, June.
    3. Lave, Matthew & Kleissl, Jan, 2011. "Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States," Renewable Energy, Elsevier, vol. 36(3), pages 1145-1152.
    4. Feltrin, Andrea & Freundlich, Alex, 2008. "Material considerations for terawatt level deployment of photovoltaics," Renewable Energy, Elsevier, vol. 33(2), pages 180-185.
    5. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    6. Schiffer, Hans-Wilhelm, 2008. "WEC energy policy scenarios to 2050," Energy Policy, Elsevier, vol. 36(7), pages 2464-2470, July.
    7. Stoppato, A., 2008. "Life cycle assessment of photovoltaic electricity generation," Energy, Elsevier, vol. 33(2), pages 224-232.
    8. Resch, Gustav & Held, Anne & Faber, Thomas & Panzer, Christian & Toro, Felipe & Haas, Reinhard, 2008. "Potentials and prospects for renewable energies at global scale," Energy Policy, Elsevier, vol. 36(11), pages 4048-4056, November.
    9. Raugei, Marco & Bargigli, Silvia & Ulgiati, Sergio, 2007. "Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si," Energy, Elsevier, vol. 32(8), pages 1310-1318.
    10. El Chaar, L. & lamont, L.A. & El Zein, N., 2011. "Review of photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2165-2175, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingkui Qiu & Min Zhou & Yang Qiu & Shuhan Liu & Guoliang Ou & Chaonan Ma & Jiating Tu & Siqi Li, 2022. "An Integrated Spatial Autoregressive Model for Analyzing and Simulating Urban Spatial Growth in a Garden City, China," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    2. Marwede, Max & Reller, Armin, 2012. "Future recycling flows of tellurium from cadmium telluride photovoltaic waste," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 35-49.
    3. Rao Fu & Kun Peng & Peng Wang & Honglin Zhong & Bin Chen & Pengfei Zhang & Yiyi Zhang & Dongyang Chen & Xi Liu & Kuishuang Feng & Jiashuo Li, 2023. "Tracing metal footprints via global renewable power value chains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Stamp, Anna & Wäger, Patrick A. & Hellweg, Stefanie, 2014. "Linking energy scenarios with metal demand modeling–The case of indium in CIGS solar cells," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 156-167.
    5. Wu, Tian & Zhou, Wei & Yan, Xiaoyu & Ou, Xunmin, 2016. "Optimal policy design for photovoltaic power industry with positive externality in China," Resources, Conservation & Recycling, Elsevier, vol. 115(C), pages 22-30.
    6. Hetong Wang & Kuishuang Feng & Peng Wang & Yuyao Yang & Laixiang Sun & Fan Yang & Wei-Qiang Chen & Yiyi Zhang & Jiashuo Li, 2023. "China’s electric vehicle and climate ambitions jeopardized by surging critical material prices," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Tran, Thuc Han & Egermann, Markus, 2022. "Land-use implications of energy transition pathways towards decarbonisation – Comparing the footprints of Vietnam, New Zealand and Finland," Energy Policy, Elsevier, vol. 166(C).
    8. Choi, Chul Hun & Cao, Jinjian & Zhao, Fu, 2016. "System Dynamics Modeling of Indium Material Flows under Wide Deployment of Clean Energy Technologies," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 59-71.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lloyd, Bob & Forest, Andrew S., 2010. "The transition to renewables: Can PV provide an answer to the peak oil and climate change challenges?," Energy Policy, Elsevier, vol. 38(11), pages 7378-7394, November.
    2. Bravi, Mirko & Parisi, Maria Laura & Tiezzi, Enzo & Basosi, Riccardo, 2011. "Life cycle assessment of a micromorph photovoltaic system," Energy, Elsevier, vol. 36(7), pages 4297-4306.
    3. Cucchiella, Federica & D'Adamo, Idiano, 2012. "Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5245-5259.
    4. Marwede, Max & Berger, Wolfgang & Schlummer, Martin & Mäurer, Andreas & Reller, Armin, 2013. "Recycling paths for thin-film chalcogenide photovoltaic waste – Current feasible processes," Renewable Energy, Elsevier, vol. 55(C), pages 220-229.
    5. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    6. Laleman, Ruben & Albrecht, Johan & Dewulf, Jo, 2011. "Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 267-281, January.
    7. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    8. Chaianong, Aksornchan & Pharino, Chanathip, 2015. "Outlook and challenges for promoting solar photovoltaic rooftops in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 356-372.
    9. Sahoo, Sarat Kumar, 2016. "Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 927-939.
    10. Azadian, Farshad & Radzi, M.A.M., 2013. "A general approach toward building integrated photovoltaic systems and its implementation barriers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 527-538.
    11. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    12. Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
    13. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    14. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    15. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    16. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    17. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    18. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    19. Sumper, Andreas & Robledo-García, Mercedes & Villafáfila-Robles, Roberto & Bergas-Jané, Joan & Andrés-Peiró, Juan, 2011. "Life-cycle assessment of a photovoltaic system in Catalonia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3888-3896.
    20. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2015. "Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation − Application in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 112-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:56:y:2011:i:1:p:56-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.