IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v10y2025i2d10.1007_s41247-025-00125-7.html
   My bibliography  Save this article

Gallium: Assessing the Long-Term Future Extraction, Supply, Recycling, and Price of Using WORLD7, in Relation to Future Technology Visions in the European Union

Author

Listed:
  • Harald Ulrik Sverdrup

    (Inland Norway University)

  • Hördur Valdimar Haraldsson

    (Inland Norway University)

Abstract

The gallium resources were assessed and used as input to long-term simulations using the WORLD7 model. The content of gallium in different mother ores has been estimated to be about 14.7 million tons of gallium. Much of this is not accessible because of low extraction yields, about 610,000 tons gallium appear to be extractable (4%) with present practices. The gallium content in all source metal refining residuals is about 51,000 ton/yr, but only a production of 1,374 ton/yr appears as the maximum with present technology and conditions. The actual gallium production was about 450 ton/yr in 2023. The gallium price is very sensitive to increases in demand, and production is not very likely to be able to rapidly increase. The simulations show that soft gallium scarcity sets in after 2028 and physical scarcity will occur about 2060. Better gallium extraction and recycling yields may push the scarcity date forward to 2100. 60% of the gallium demand for photovoltaic technology can be satisfied in the long term. To improve the situation and prevent scarcity, extractive access, gallium extraction yields, and recycling yields must be significantly improved to better than 50%. At present, the overall yields are 7–15%. Increasing extraction yields and recycling yields can reduce the shortage. The long-term sustainable extraction is under Business-as-Usual about 300 tons gallium per year, about 67% of the present production. This poses a major challenge to future plans for an energy transition, where under Business-as-usual (BAU), such a transition will remain hypothetical. The four EEA imaginaries, Ecotopia, The Great Decoupling, Unity in Adversity, and Technocracy for the Common Good, offer different policy pathways for managing future gallium scarcity through varying degrees of technological advancement, resource conservation, and avoidance strategy.

Suggested Citation

  • Harald Ulrik Sverdrup & Hördur Valdimar Haraldsson, 2025. "Gallium: Assessing the Long-Term Future Extraction, Supply, Recycling, and Price of Using WORLD7, in Relation to Future Technology Visions in the European Union," Biophysical Economics and Resource Quality, Springer, vol. 10(2), pages 1-24, December.
  • Handle: RePEc:spr:bioerq:v:10:y:2025:i:2:d:10.1007_s41247-025-00125-7
    DOI: 10.1007/s41247-025-00125-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-025-00125-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-025-00125-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zuser, Anton & Rechberger, Helmut, 2011. "Considerations of resource availability in technology development strategies: The case study of photovoltaics," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 56-65.
    2. Till Zimmermann & Stefan Gößling-Reisemann, 2014. "Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications," Resources, MDPI, vol. 3(1), pages 1-28, March.
    3. Jeffrey A. Krautkraemer, 1988. "The Cut-Off Grade and the Theory of Extraction," Canadian Journal of Economics, Canadian Economics Association, vol. 21(1), pages 146-160, February.
    4. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir & Kristin Vala Ragnarsdottir & Deniz Koca, 2018. "A System Dynamics Assessment of the Supply of Molybdenum and Rhenium Used for Super-alloys and Specialty Steels, Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-43, September.
    5. Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
    6. Gavin M. Mudd & Mohan Yellishetty & Barbara K. Reck & T. E. Graedel, 2014. "Quantifying the Recoverable Resources of Companion Metals: A Preliminary Study of Australian Mineral Resources," Resources, MDPI, vol. 3(4), pages 1-15, December.
    7. Han, Aiping & Ge, Jianping & Lei, Yalin, 2015. "An adjustment in regulation policies and its effects on market supply: Game analysis for China’s rare earths," Resources Policy, Elsevier, vol. 46(P2), pages 30-42.
    8. Frenzel, Max & Ketris, Marina P. & Seifert, Thomas & Gutzmer, Jens, 2016. "On the current and future availability of gallium," Resources Policy, Elsevier, vol. 47(C), pages 38-50.
    9. Frenzel, Max & Mikolajczak, Claire & Reuter, Markus A. & Gutzmer, Jens, 2017. "Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium," Resources Policy, Elsevier, vol. 52(C), pages 327-335.
    10. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2014. "On modelling the global copper mining rates, market supply, copper price and the end of copper reserves," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 158-174.
    11. Phillips, W. G. B. & Edwards, D. P., 1976. "Metal prices as a function of ore grade," Resources Policy, Elsevier, vol. 2(3), pages 167-178, September.
    12. Joanna Kluczka, 2024. "A Review on the Recovery and Separation of Gallium and Indium from Waste," Resources, MDPI, vol. 13(3), pages 1-38, March.
    13. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    14. Hayes-Labruto, Leslie & Schillebeeckx, Simon J.D. & Workman, Mark & Shah, Nilay, 2013. "Contrasting perspectives on China's rare earths policies: Reframing the debate through a stakeholder lens," Energy Policy, Elsevier, vol. 63(C), pages 55-68.
    15. Christina Licht & Laura Talens Peiró & Gara Villalba, 2015. "Global Substance Flow Analysis of Gallium, Germanium, and Indium: Quantification of Extraction, Uses, and Dissipative Losses within their Anthropogenic Cycles," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 890-903, October.
    16. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir, 2018. "A System Dynamics Model Assessment of the Supply of Niobium and Tantalum Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 3(2), pages 1-35, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harald Ulrik Sverdrup & Hördur Valdimar Haraldsson, 2024. "Assessing the Long-Term Sustainability of Germanium Supply and Price Using the WORLD7 Integrated Assessment Model," Biophysical Economics and Resource Quality, Springer, vol. 9(4), pages 1-33, December.
    2. Helbig, Christoph & Bradshaw, Alex M. & Kolotzek, Christoph & Thorenz, Andrea & Tuma, Axel, 2016. "Supply risks associated with CdTe and CIGS thin-film photovoltaics," Applied Energy, Elsevier, vol. 178(C), pages 422-433.
    3. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
    4. André Månberger, 2021. "Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources," Biophysical Economics and Resource Quality, Springer, vol. 6(2), pages 1-15, June.
    5. Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
    6. Huijuan Dong & Tianyu Zhang & Yong Geng & Peng Wang & Shu Zhang & Joseph Sarkis, 2025. "Sub-technology market share strongly affects critical material constraints in power system transitions," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    7. Bigerna, Simona & Campbell, Gary, 2025. "The impact of by-product production on the availability of critical metals for the transition to renewable energy," Energy Policy, Elsevier, vol. 198(C).
    8. Mei, Yueru & Geng, Yong & Chen, Zhujun & Xiao, Shijiang & Gao, Ziyan, 2024. "Ensuring the sustainable supply of semiconductor material: A case of germanium in China," International Journal of Production Economics, Elsevier, vol. 271(C).
    9. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir, 2020. "Conceptualization and parameterization of the market price mechanism in the WORLD6 model for metals, materials, and fossil fuels," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(3), pages 285-310, October.
    11. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir, 2018. "A System Dynamics Model Assessment of the Supply of Niobium and Tantalum Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 3(2), pages 1-35, June.
    12. Jordan, Brett, 2018. "Economics literature on joint production of minerals: A survey," Resources Policy, Elsevier, vol. 55(C), pages 20-28.
    13. Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    14. Werner, Tim T. & Mudd, Gavin M. & Jowitt, Simon M. & Huston, David, 2023. "Rhenium mineral resources: A global assessment," Resources Policy, Elsevier, vol. 82(C).
    15. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    16. Philipp Schäfer & Mario Schmidt, 2021. "Model-based analysis of the limits of recycling for its contribution to climate change mitigation [Modellgestützte Analyse der Grenzen des Beitrags von Recycling zum Klimaschutz]," Sustainability Nexus Forum, Springer, vol. 29(2), pages 65-75, June.
    17. Frenzel, Max & Ketris, Marina P. & Seifert, Thomas & Gutzmer, Jens, 2016. "On the current and future availability of gallium," Resources Policy, Elsevier, vol. 47(C), pages 38-50.
    18. Frenzel, Max & Mikolajczak, Claire & Reuter, Markus A. & Gutzmer, Jens, 2017. "Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium," Resources Policy, Elsevier, vol. 52(C), pages 327-335.
    19. Olafsdottir, Anna Hulda & Sverdrup, Harald Ulrik, 2019. "Defining a Conceptual Model for Market Mechanisms in Food Supply Chains, and Parameterizing Price Functions for Coffee, Wheat, Corn, Soybeans and Beef," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(02), April.
    20. Harald Ulrik Sverdrup & Antoniy Elias Sverdrup, 2024. "On the Supply Dynamics of Scandium, Global Resources, Production, Oxide and Metal Price, a Prospective Modelling Study Using WORLD7," Biophysical Economics and Resource Quality, Springer, vol. 9(2), pages 1-22, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:10:y:2025:i:2:d:10.1007_s41247-025-00125-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.