IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v157y2021ics0301421521003542.html
   My bibliography  Save this article

The importance of peak pricing in realizing system benefits from distributed storage

Author

Listed:
  • Lavin, Luke
  • Apt, Jay

Abstract

A fundamental policy question for distributed energy resources (DER) is whether they create system benefits shared by all utility customers in addition to being profitable for the installing customer. This question has received considerable attention in “value of DER” and net metering reform proceedings for behind-the-meter solar photovoltaics in recent years. Commercial customer-sited lithium-ion batteries with a primary use case of demand charge management are forecast to greatly increase in the coming decade due to falling storage costs, making comparison of their customer and system benefits a timely topic in DER valuation. We conduct an overview of the system benefits of standalone commercial customer-sited storage on United States’ electric tariffs and find system benefits will not be realized for many standalone commercial customer-sited storage installations in the absence of incentives for storage dispatch during the top 50–100 annual hours that drive grid infrastructure investment. Regulatory implementation of default peak pricing during a small subset of annual hours for customer-sited storage can realize additional system benefits and offer Pareto improvement. Additional transparency in regulatory estimates of these system benefits helps catalyze longer-term visions for increased competition at the retail level using DERs.

Suggested Citation

  • Lavin, Luke & Apt, Jay, 2021. "The importance of peak pricing in realizing system benefits from distributed storage," Energy Policy, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:enepol:v:157:y:2021:i:c:s0301421521003542
    DOI: 10.1016/j.enpol.2021.112484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521003542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Severin Borenstein & James B. Bushnell, 2022. "Do Two Electricity Pricing Wrongs Make a Right? Cost Recovery, Externalities, and Efficiency," American Economic Journal: Economic Policy, American Economic Association, vol. 14(4), pages 80-110, November.
    2. Griffiths, Benjamin Whitney, 2019. "Reducing emissions from consumer energy storage using retail rate design," Energy Policy, Elsevier, vol. 129(C), pages 481-490.
    3. Bistline, John E.T. & Young, David T., 2020. "Emissions impacts of future battery storage deployment on regional power systems," Applied Energy, Elsevier, vol. 264(C).
    4. Faruqui, Ahmad & Hledik, Ryan & Tsoukalis, John, 2009. "The Power of Dynamic Pricing," The Electricity Journal, Elsevier, vol. 22(3), pages 42-56, April.
    5. Craig, Michael T. & Jaramillo, Paulina & Hodge, Bri-Mathias & Williams, Nathaniel J. & Severnini, Edson, 2018. "A retrospective analysis of the market price response to distributed photovoltaic generation in California," Energy Policy, Elsevier, vol. 121(C), pages 394-403.
    6. Guannan He & Qixin Chen & Panayiotis Moutis & Soummya Kar & Jay F. Whitacre, 2018. "An intertemporal decision framework for electrochemical energy storage management," Nature Energy, Nature, vol. 3(5), pages 404-412, May.
    7. Keen, Jeremy F. & Apt, Jay, 2019. "How much capacity deferral value can targeted solar deployment create in Pennsylvania?," Energy Policy, Elsevier, vol. 134(C).
    8. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    9. Katharine Ricke & Laurent Drouet & Ken Caldeira & Massimo Tavoni, 2019. "Author Correction: Country-level social cost of carbon," Nature Climate Change, Nature, vol. 9(7), pages 567-567, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, Patrick R. & O'Sullivan, Francis M., 2020. "Spatial and temporal variation in the value of solar power across United States electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    3. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    4. Patrycja Klusak & Matthew Agarwala & Matt Burke & Moritz Kraemer & Kamiar Mohaddes, 2023. "Rising Temperatures, Falling Ratings: The Effect of Climate Change on Sovereign Creditworthiness," Management Science, INFORMS, vol. 69(12), pages 7468-7491, December.
    5. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," PSE Working Papers halshs-03828939, HAL.
    6. Golinucci, Nicolò & Tonini, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2023. "Towards BitCO2, an individual consumption-based carbon emission reduction mechanism," Energy Policy, Elsevier, vol. 183(C).
    7. Ahmed S. Alahmed & Lang Tong, 2022. "Integrating Distributed Energy Resources: Optimal Prosumer Decisions and Impacts of Net Metering Tariffs," Papers 2204.06115, arXiv.org, revised May 2022.
    8. Xavier Labandeira & José M Labeaga & Jordi J Teixidó, 2022. "Major Reforms in Electricity Pricing: Evidence from a Quasi-Experiment," The Economic Journal, Royal Economic Society, vol. 132(644), pages 1517-1541.
    9. David P. Brown & David E. M. Sappington, 2023. "Market Structure, Risk Preferences, and Forward Contracting Incentives," Journal of Industrial Economics, Wiley Blackwell, vol. 71(4), pages 1146-1202, December.
    10. Brucal, Arlan & Tarui, Nori, 2021. "The effects of utility revenue decoupling on electricity prices," Energy Economics, Elsevier, vol. 101(C).
    11. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    12. Huntington, Hillard, 2025. "Do high power prices slow electrification? Some panel data evidence," Energy Policy, Elsevier, vol. 203(C).
    13. Francisco Costa & François Gerard, 2021. "Hysteresis and the Welfare Effect of Corrective Policies: Theory and Evidence from an Energy-Saving Program," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1705-1743.
    14. Ghodeswar, Archana & Oliver, Matthew E., 2022. "Trading one waste for another? Unintended consequences of fly ash reuse in the Indian electric power sector," Energy Policy, Elsevier, vol. 165(C).
    15. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    16. Liu, Chunyu & Zheng, Xinrui & Yang, Haibin & Tang, Waiching & Sang, Guochen & Cui, Hongzhi, 2023. "Techno-economic evaluation of energy storage systems for concentrated solar power plants using the Monte Carlo method," Applied Energy, Elsevier, vol. 352(C).
    17. Zhang, Tong & Burke, Paul J. & Wang, Qi, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Resource and Energy Economics, Elsevier, vol. 76(C).
    18. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    19. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    20. Bingtao Quan & Sujian Li & Kuo-Jui Wu, 2022. "Optimizing the Vehicle Scheduling Problem for Just-in-Time Delivery Considering Carbon Emissions and Atmospheric Particulate Matter," Sustainability, MDPI, vol. 14(10), pages 1-19, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:157:y:2021:i:c:s0301421521003542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.