IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v123y2018icp503-513.html
   My bibliography  Save this article

Hydrothermal carbonization (HTC) of green waste: Mitigation potentials, costs, and policy implications of HTC coal in the metropolitan region of Berlin, Germany

Author

Listed:
  • Medick, Jakob
  • Teichmann, Isabel
  • Kemfert, Claudia

Abstract

We quantify the greenhouse-gas mitigation potential and carbon abatement costs if green waste in the metropolitan region of Berlin, Germany, is diverted from composting into the production of hydrothermally carbonized coal (HTC coal) that is used to substitute for hard coal in electricity and heat generation. Depending on the origin of the green waste, we specify an urban, a rural-urban, and a rural scenario. All scenarios combined can mitigate 70,511 metric tons (t) of carbon-dioxide equivalents (CO2e) per year. The carbon abatement costs reach 163 €/t CO2e in the urban scenario, 76 €/t CO2e in the rural-urban scenario, and 77 €/t CO2e in the rural scenario. The lower abatement costs in the latter two scenarios are mainly due to HTC-coal co-firing in an existing power plant rather than constructing a new biomass power plant for HTC-coal mono-firing as in the urban scenario. While the abatement costs exceed the current carbon prices, they compare more favorably with commonly assumed damage costs of unmitigated climate change. Thus, the public support of HTC coal could be considered, with the primary policy focus on HTC-coal co-firing. HTC-coal co-firing could also lower the emissions of existing power plants during the fossil-fuel phase-out.

Suggested Citation

  • Medick, Jakob & Teichmann, Isabel & Kemfert, Claudia, 2018. "Hydrothermal carbonization (HTC) of green waste: Mitigation potentials, costs, and policy implications of HTC coal in the metropolitan region of Berlin, Germany," Energy Policy, Elsevier, vol. 123(C), pages 503-513.
  • Handle: RePEc:eee:enepol:v:123:y:2018:i:c:p:503-513
    DOI: 10.1016/j.enpol.2018.08.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518305627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.08.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neuhoff, Karsten & Diekmann, Jochen & Kunz, Friedrich & Rüster, Sophia & Schill, Wolf-Peter & Schwenen, Sebastian, 2016. "A coordinated strategic reserve to safeguard the European energy transition," Utilities Policy, Elsevier, vol. 41(C), pages 252-263.
    2. Claudio Marcantonini, A. Denny Ellerman, 2015. "The Implicit Carbon Price of Renewable Energy Incentives in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Long-run power storage requirements for high shares of renewables: Results and sensitivities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 156-171.
    4. Cherubini, Francesco, 2010. "GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns," Renewable Energy, Elsevier, vol. 35(7), pages 1565-1573.
    5. Jakob Medick & Isabel Teichmann & Claudia Kemfert, 2017. "Hydrothermal Carbonization (HTC) of Green Waste: An Environmental and Economic Assessment of HTC Coal in the Metropolitan Region of Berlin, Germany," Discussion Papers of DIW Berlin 1690, DIW Berlin, German Institute for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy, Poritosh & Dutta, Animesh & Gallant, Jim, 2020. "Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakob Medick & Isabel Teichmann & Claudia Kemfert, 2017. "Hydrothermal Carbonization (HTC) of Green Waste: An Environmental and Economic Assessment of HTC Coal in the Metropolitan Region of Berlin, Germany," Discussion Papers of DIW Berlin 1690, DIW Berlin, German Institute for Economic Research.
    2. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    3. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    4. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    5. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    6. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    7. Spiros Papaefthimiou, Manolis Souliotis, and Kostas Andriosopoulos, 2016. "Grid parity of solar energy: imminent fact or future's fiction," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    8. Monyei, Chukwuka G. & Akpeji, Kingsley O. & Oladeji, Olamide & Babatunde, Olubayo M. & Aholu, Okechukwu C. & Adegoke, Damilola & Imafidon, Justus O., 2022. "Regional cooperation for mitigating energy poverty in Sub-Saharan Africa: A context-based approach through the tripartite lenses of access, sufficiency, and mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Quemin, Simon & Trotignon, Raphaël, 2021. "Emissions trading with rolling horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    10. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    11. Kong, Xue & Wang, Hongye & Li, Nan & Mu, Hailin, 2022. "Multi-objective optimal allocation and performance evaluation for energy storage in energy systems," Energy, Elsevier, vol. 253(C).
    12. Tangerås, Thomas P., 2018. "Equilibrium supply security in a multinational electricity market with renewable production," Energy Economics, Elsevier, vol. 72(C), pages 416-435.
    13. Espinosa, María Paz & Pizarro-Irizar, Cristina, 2018. "Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 902-914.
    14. Quemin, Simon, 2022. "Raising climate ambition in emissions trading systems: The case of the EU ETS and the 2021 review," Resource and Energy Economics, Elsevier, vol. 68(C).
    15. Kimming, M. & Sundberg, C. & Nordberg, Å. & Hansson, P.-A., 2015. "Vertical integration of local fuel producers into rural district heating systems – Climate impact and production costs," Energy Policy, Elsevier, vol. 78(C), pages 51-61.
    16. Monia El Akkari & Nosra Ben Fradj & Benoît Gabrielle & Sylvestre Njakou Djomo, 2023. "Spatially-explicit environmental assessment of bioethanol from miscanthus and switchgrass in France [Évaluation environnementale spatialement explicite du bioéthanol produit à partir de miscanthus ," Post-Print hal-04369771, HAL.
    17. Peter, Christiane & Specka, Xenia & Aurbacher, Joachim & Kornatz, Peter & Herrmann, Christiane & Heiermann, Monika & Müller, Janine & Nendel, Claas, 2017. "The MiLA tool: Modeling greenhouse gas emissions and cumulative energy demand of energy crop cultivation in rotation," Agricultural Systems, Elsevier, vol. 152(C), pages 67-79.
    18. Auguadra, Marco & Ribó-Pérez, David & Gómez-Navarro, Tomás, 2023. "Planning the deployment of energy storage systems to integrate high shares of renewables: The Spain case study," Energy, Elsevier, vol. 264(C).
    19. Olivier De Groote & Axel Gautier & Frank Verboven, 2020. "The political economic of financing climate policy : evidence from the solar PV subsidy programs," Working Paper Research 389, National Bank of Belgium.
    20. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.

    More about this item

    Keywords

    Hydrothermal carbonization; Char; Biocoal; Bioenergy; Climate change; Life cycle;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:123:y:2018:i:c:p:503-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.