IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v119y2018icp294-306.html
   My bibliography  Save this article

The early retirement challenge for fossil fuel power plants in deep decarbonisation scenarios

Author

Listed:
  • Kefford, Benjamin M.
  • Ballinger, Benjamin
  • Schmeda-Lopez, Diego R.
  • Greig, Chris
  • Smart, Simon

Abstract

Rapid decarbonisation of the global energy sector will likely have a multitude of economic consequences, including the premature decommissioning of most fossil fuel power plants. In this analysis, we examine the impact of early retirements for oil, coal, and natural gas-fired generators required to follow a given 2 °C emissions trajectory (the IEA 2DS) and explore the policy implications surrounding this challenge. Modelling the period up to 2060, the drop in retirement age required to meet this scenario potentially creates $541 billion worth of stranded power plant assets across the US, EU, China, and India alone. In some cases, coal plants built within the past 5 years will need to be retired after only half the nominal operating lifetime. Regional analysis exposed disproportionate impacts in China and India, shouldering the vast majority of the costs and amplifying concerns over energy access and affordability. Policies such as burden-sharing for equitable mitigation, investment into CCS technology, and international financial compensation are discussed as potential avenues for mitigating this impact. However, limitations in all avenues highlight the need for further consideration of the inferred requirement to force early retirements, in order to avoid exacerbating regional imbalances and improve the feasibility of imposed targets.

Suggested Citation

  • Kefford, Benjamin M. & Ballinger, Benjamin & Schmeda-Lopez, Diego R. & Greig, Chris & Smart, Simon, 2018. "The early retirement challenge for fossil fuel power plants in deep decarbonisation scenarios," Energy Policy, Elsevier, vol. 119(C), pages 294-306.
  • Handle: RePEc:eee:enepol:v:119:y:2018:i:c:p:294-306
    DOI: 10.1016/j.enpol.2018.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518302349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jindal, Abhinav & Shrimali, Gireesh, 2022. "Cost–benefit analysis of coal plant repurposing in developing countries: A case study of India," Energy Policy, Elsevier, vol. 164(C).
    2. Shimbar, Ali, 2021. "Environment-related stranded assets: What does the market think about the impact of collective climate action on the value of fossil fuel stocks?," Energy Economics, Elsevier, vol. 103(C).
    3. Wu, Qingyang & Tan, Chang & Wang, Daoping & Wu, Yongtao & Meng, Jing & Zheng, Heran, 2023. "How carbon emission prices accelerate net zero: Evidence from China's coal-fired power plants," Energy Policy, Elsevier, vol. 177(C).
    4. Pereira , Alfredo Marvão & Pereira, Rui Manuel, 2021. "On the Macroeconomic and Distributional Effects of the Regulated Closure of Coal-Operated Power Plants," Journal of Economic Development, The Economic Research Institute, Chung-Ang University, vol. 46(4), pages 1-30, December.
    5. Angelika von Dulong, 2023. "Concentration of asset owners exposed to power sector stranded assets may trigger climate policy resistance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Ernesto Rivas & María Ángeles Martín-Lara & Gabriel Blázquez & Antonio Pérez & Mónica Calero, 2019. "Column Leaching Tests to Valorize a Solid Waste from the Decommissioning of Coal-Fired Power Plants," Energies, MDPI, vol. 12(9), pages 1-13, May.
    7. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 130, pages 1-1.
    8. Miroslav Variny, 2022. "Comment on Rogalev et al. Structural and Parametric Optimization of S-CO 2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia. Energies 2021, 14 , 7136," Energies, MDPI, vol. 15(5), pages 1-5, February.
    9. Le Treut, Gaëlle & Lefèvre, Julien & Lallana, Francisco & Bravo, Gonzalo, 2021. "The multi-level economic impacts of deep decarbonization strategies for the energy system," Energy Policy, Elsevier, vol. 156(C).
    10. Pegels, Anna & Altenburg, Tilman, 2020. "Latecomer development in a “greening” world: Introduction to the Special Issue," World Development, Elsevier, vol. 135(C).
    11. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    12. Zhu, Mingjuan & Liu, Yudong & Wu, Xiao & Shen, Jiong, 2023. "Dynamic modeling and comprehensive analysis of direct air-cooling coal-fired power plant integrated with carbon capture for reliable, economic and flexible operation," Energy, Elsevier, vol. 263(PA).
    13. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    14. Kühne, Kjell & Bartsch, Nils & Tate, Ryan Driskell & Higson, Julia & Habet, André, 2022. "“Carbon Bombs” - Mapping key fossil fuel projects," Energy Policy, Elsevier, vol. 166(C).
    15. Maamoun, Nada & Kennedy, Ryan & Jin, Xiaomeng & Urpelainen, Johannes, 2020. "Identifying coal-fired power plants for early retirement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:119:y:2018:i:c:p:294-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.