IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v108y2017icp292-298.html
   My bibliography  Save this article

Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”

Author

Listed:
  • Vale, A.M.
  • Felix, D.G.
  • Fortes, M.Z.
  • Borba, B.S.M.C.
  • Dias, B.H.
  • Santelli, B.S.

Abstract

In Brazil, distributed grid-connected solar photovoltaic (PV) plays an increasingly role due to advances in PV technology, combined with decreasing capital costs and subsidies. Therefore, this paper aims conduct an economic analysis of two projects in “Minha Casa Minha Vida” (MCMV) governmental program, one in the state São Paulo and the other in the state of Piauí, using distributed photovoltaic power generation. The MCMV is the Brazilian government's housing program that gives access to home ownership to low-income Brazilians in urban and rural areas. Such analysis was undertaken by the evaluation of the net present value (NPV) and internal rate of return (IRR), considering a Minimum Attractive Rate of Return (MARR) and by varying the annual growth of energy tariffs over 25 years of operation, which represents the expected lifespan of solar panels. These two cities were chosen because their federal states have different actions with respect to tax matters. Such difference, in particular, will be examined and explored in this article. Results show that even though Piauí presents a higher average solar radiation than São Paulo, the impact of ICMS exemption guarantees an advantage of investing in São Paulo.

Suggested Citation

  • Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.
  • Handle: RePEc:eee:enepol:v:108:y:2017:i:c:p:292-298
    DOI: 10.1016/j.enpol.2017.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517303555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao, Jacqueline Yujia & Finenko, Anton, 2016. "Moving beyond LCOE: impact of various financing methods on PV profitability for SIDS," Energy Policy, Elsevier, vol. 98(C), pages 749-758.
    2. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    3. Anaya, Karim L. & Pollitt, Michael G., 2015. "Integrating distributed generation: Regulation and trends in three leading countries," Energy Policy, Elsevier, vol. 85(C), pages 475-486.
    4. Obi, Manasseh & Bass, Robert, 2016. "Trends and challenges of grid-connected photovoltaic systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1082-1094.
    5. Zhang, Fang & Deng, Hao & Margolis, Robert & Su, Jun, 2015. "Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China," Energy Policy, Elsevier, vol. 81(C), pages 43-55.
    6. Camilo, Henrique Fernandes & Udaeta, Miguel Edgar Morales & Veiga Gimenes, André Luiz & Grimoni, Jose Aquiles Baesso, 2017. "Assessment of photovoltaic distributed generation – Issues of grid connected systems through the consumer side applied to a case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 712-719.
    7. Bodach, Susanne & Hamhaber, J., 2010. "Energy efficiency in social housing: Opportunities and barriers from a case study in Brazil," Energy Policy, Elsevier, vol. 38(12), pages 7898-7910, December.
    8. Muñoz, José Ignacio & Sánchez de la Nieta, Agustín A. & Contreras, Javier & Bernal-Agustín, José L., 2009. "Optimal investment portfolio in renewable energy: The Spanish case," Energy Policy, Elsevier, vol. 37(12), pages 5273-5284, December.
    9. ., 2016. "Ranking alternative distributions of wealth," Chapters, in: The Distribution of Wealth – Growing Inequality?, chapter 6, pages 117-137, Edward Elgar Publishing.
    10. McHenry, Mark P., 2012. "Are small-scale grid-connected photovoltaic systems a cost-effective policy for lowering electricity bills and reducing carbon emissions? A technical, economic, and carbon emission analysis," Energy Policy, Elsevier, vol. 45(C), pages 64-72.
    11. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
    12. Martins, F.R. & Abreu, S.L. & Pereira, E.B., 2012. "Scenarios for solar thermal energy applications in Brazil," Energy Policy, Elsevier, vol. 48(C), pages 640-649.
    13. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    14. Chegut, Andrea & Eichholtz, Piet & Holtermans, Rogier, 2016. "Energy efficiency and economic value in affordable housing," Energy Policy, Elsevier, vol. 97(C), pages 39-49.
    15. de Melo, Conrado Augustus & Jannuzzi, Gilberto de Martino & Bajay, Sergio Valdir, 2016. "Nonconventional renewable energy governance in Brazil: Lessons to learn from the German experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 222-234.
    16. Koo, Bonsang, 2017. "Examining the impacts of Feed-in-Tariff and the Clean Development Mechanism on Korea's renewable energy projects through comparative investment analysis," Energy Policy, Elsevier, vol. 104(C), pages 144-154.
    17. Rodrigues, Sandy & Chen, Xiaoju & Morgado-Dias, F., 2017. "Economic analysis of photovoltaic systems for the residential market under China's new regulation," Energy Policy, Elsevier, vol. 101(C), pages 467-472.
    18. Lopes, Alice do Carmo Precci & Oliveira Filho, Delly & Altoe, Leandra & Carlo, Joyce Correna & Lima, Bruna Bastos, 2016. "Energy efficiency labeling program for buildings in Brazil compared to the United States' and Portugal's," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 207-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filippo Antoniolli, Andrigo & Naspolini, Helena Flávia & de Abreu, João Frederico & Rüther, Ricardo, 2022. "The role and benefits of residential rooftop photovoltaic prosumers in Brazil," Renewable Energy, Elsevier, vol. 187(C), pages 204-222.
    2. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    3. de Doile, Gabriel Nasser Doyle & Rotella Junior, Paulo & Rocha, Luiz Célio Souza & Janda, Karel & Aquila, Giancarlo & Peruchi, Rogério Santana & Balestrassi, Pedro Paulo, 2022. "Feasibility of hybrid wind and photovoltaic distributed generation and battery energy storage systems under techno-economic regulation," Renewable Energy, Elsevier, vol. 195(C), pages 1310-1323.
    4. Garlet, Taís Bisognin & Ribeiro, José Luis Duarte & de Souza Savian, Fernando & Mairesse Siluk, Julio Cezar, 2019. "Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 157-169.
    5. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    6. de Oliveira Pinto Coelho, Eden & Aquila, Giancarlo & Bonatto, Benedito Donizeti & Balestrassi, Pedro Paulo & de Oliveira Pamplona, Edson & Nakamura, Wilson Toshiro, 2021. "Regulatory impact of photovoltaic prosumer policies in Brazil based on a financial risk analysis," Utilities Policy, Elsevier, vol. 70(C).
    7. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    8. Vilaça Gomes, P. & Knak Neto, N. & Carvalho, L. & Sumaili, J. & Saraiva, J.T. & Dias, B.H. & Miranda, V. & Souza, S.M., 2018. "Technical-economic analysis for the integration of PV systems in Brazil considering policy and regulatory issues," Energy Policy, Elsevier, vol. 115(C), pages 199-206.
    9. Gustavo Leite Gonçalves & Raphael Abrahão & Paulo Rotella Junior & Luiz Célio Souza Rocha, 2022. "Economic Feasibility of Conventional and Building-Integrated Photovoltaics Implementation in Brazil," Energies, MDPI, vol. 15(18), pages 1-16, September.
    10. Felipe Barroco Fontes Cunha & Maria Cândida Arrais de Miranda Mousinho & Luciana Carvalho & Fábio Fernandes & Celso Castro & Marcelo Santana Silva & Ednildo Andrade Torres, 2021. "Renewable energy planning policy for the reduction of poverty in Brazil: lessons from Juazeiro," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9792-9810, July.
    11. Sergio Mayrink & Janaína G. Oliveira & Bruno H. Dias & Leonardo W. Oliveira & Juan S. Ochoa & Gustavo S. Rosseti, 2020. "Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation," Energies, MDPI, vol. 13(4), pages 1-16, February.
    12. Coria, Gustavo & Penizzotto, Franco & Pringles, Rolando, 2019. "Economic analysis of photovoltaic projects: The Argentinian renewable generation policy for residential sectors," Renewable Energy, Elsevier, vol. 133(C), pages 1167-1177.
    13. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    2. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    3. Prakash, Vrishab & Ghosh, Sajal & Kanjilal, Kakali, 2020. "Costs of avoided carbon emission from thermal and renewable sources of power in India and policy implications," Energy, Elsevier, vol. 200(C).
    4. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
    5. Wang, Chaofan & Shuai, Jing & Ding, Liping & Lu, Yang & Chen, Jia, 2022. "Comprehensive benefit evaluation of solar PV projects based on multi-criteria decision grey relation projection method: Evidence from 5 counties in China," Energy, Elsevier, vol. 238(PB).
    6. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    7. Elie, Luc & Granier, Caroline & Rigot, Sandra, 2021. "The different types of renewable energy finance: A Bibliometric analysis," Energy Economics, Elsevier, vol. 93(C).
    8. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    9. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Chen, Kaifeng & Sun, Xiaokun, 2018. "An intuitionistic fuzzy multi-criteria framework for large-scale rooftop PV project portfolio selection: Case study in Zhejiang, China," Energy, Elsevier, vol. 143(C), pages 295-309.
    10. Xin-gang, Zhao & Yi-min, Xie, 2019. "The economic performance of industrial and commercial rooftop photovoltaic in China," Energy, Elsevier, vol. 187(C).
    11. Wenjie Zhang & Yuqiang Zhao & Fengcheng Huang & Yongheng Zhong & Jianwei Zhou, 2021. "Forecasting the Energy and Economic Benefits of Photovoltaic Technology in China’s Rural Areas," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    12. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    13. Mágui Lage & Rui Castro, 2022. "A Practical Review of the Public Policies Used to Promote the Implementation of PV Technology in Smart Grids: The Case of Portugal," Energies, MDPI, vol. 15(10), pages 1-20, May.
    14. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
    15. Cristea, Ciprian & Cristea, Maria & Birou, Iulian & Tîrnovan, Radu-Adrian, 2020. "Economic assessment of grid-connected residential solar photovoltaic systems introduced under Romania’s new regulation," Renewable Energy, Elsevier, vol. 162(C), pages 13-29.
    16. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Priscila França Gonzaga Carneiro & Rogério Santana Peruchi & Luiz Célio Souza Rocha & Karel Janda & Giancarlo Aquila, 2021. "Economic Feasibility of Photovoltaic Micro-Installations Connected to the Brazilian Distribution Grid in Light of Proposed Changes to Regulations," Energies, MDPI, vol. 14(6), pages 1-14, March.
    17. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    18. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    19. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    20. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:108:y:2017:i:c:p:292-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.