IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p963-d323353.html
   My bibliography  Save this article

Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation

Author

Listed:
  • Sergio Mayrink

    (MRS Logística, Juiz de Fora 36015-000, Brazil)

  • Janaína G. Oliveira

    (Department of Electrical Energy, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36015-000, Brazil
    Division for Electricity, Uppsala University, 75236 Uppsala, Sweden)

  • Bruno H. Dias

    (Department of Electrical Energy, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36015-000, Brazil)

  • Leonardo W. Oliveira

    (Department of Electrical Energy, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36015-000, Brazil)

  • Juan S. Ochoa

    (Division for Electricity, Uppsala University, 75236 Uppsala, Sweden)

  • Gustavo S. Rosseti

    (Federal Institute of Education, Science and Technology of Southeast of Minas Gerais, Santos Dumont 31270-901, MG, Brazil)

Abstract

The present work evaluates the application of regenerative braking for energy recovery in diesel-electric freight trains to increase efficiency and to improve decarbonization. The energy from regenerative braking has to be stored onboard when the track is not electrified. Different technologies of energy recovery are presented and discussed. The energy balance of an existing route is presented and simulated for different battery sizes. The analysis is illustrated with experimental data from an important Brazilian railway. Results show that the energy recovery from regenerative brake is a feasible investment and may be recommended to increase the efficiency in transportation and also to improve the low carbon mobility in railway systems.

Suggested Citation

  • Sergio Mayrink & Janaína G. Oliveira & Bruno H. Dias & Leonardo W. Oliveira & Juan S. Ochoa & Gustavo S. Rosseti, 2020. "Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation," Energies, MDPI, vol. 13(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:963-:d:323353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/963/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/963/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spiryagin, Maksym & Wolfs, Peter & Szanto, Frank & Sun, Yan Quan & Cole, Colin & Nielsen, Dwayne, 2015. "Application of flywheel energy storage for heavy haul locomotives," Applied Energy, Elsevier, vol. 157(C), pages 607-618.
    2. Zuchang Gao & Cheng Siong Chin & Wai Lok Woo & Junbo Jia, 2017. "Integrated Equivalent Circuit and Thermal Model for Simulation of Temperature-Dependent LiFePO 4 Battery in Actual Embedded Application," Energies, MDPI, vol. 10(1), pages 1-22, January.
    3. Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.
    4. Fei Lin & Xuyang Li & Yajie Zhao & Zhongping Yang, 2016. "Control Strategies with Dynamic Threshold Adjustment for Supercapacitor Energy Storage System Considering the Train and Substation Characteristics in Urban Rail Transit," Energies, MDPI, vol. 9(4), pages 1-18, March.
    5. Yuanli Liu & Minwu Chen & Shaofeng Lu & Yinyu Chen & Qunzhan Li, 2018. "Optimized Sizing and Scheduling of Hybrid Energy Storage Systems for High-Speed Railway Traction Substations," Energies, MDPI, vol. 11(9), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Fayad & Hussein Ibrahim & Adrian Ilinca & Sasan Sattarpanah Karganroudi & Mohamad Issa, 2021. "Energy Recovering Using Regenerative Braking in Diesel–Electric Passenger Trains: Economical and Technical Analysis of Fuel Savings and GHG Emission Reductions," Energies, MDPI, vol. 15(1), pages 1-16, December.
    2. Paolo Visconti & Nicola Ivan Giannoccaro & Roberto de Fazio, 2021. "Special Issue on Electronic Systems and Energy Harvesting Methods for Automation, Mechatronics and Automotive," Energies, MDPI, vol. 14(23), pages 1-5, December.
    3. Hassan Mohammadi Pirouz & Amin Hajizadeh, 2020. "A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application: Topology and Control," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    4. Francesco Cutrignelli & Gianmarco Saponaro & Michele Stefanizzi & Marco Torresi & Sergio Mario Camporeale, 2023. "Study of the Effects of Regenerative Braking System on a Hybrid Diagnostic Train," Energies, MDPI, vol. 16(2), pages 1-18, January.
    5. Nursaid Polater & Pietro Tricoli, 2022. "Technical Review of Traction Drive Systems for Light Railways," Energies, MDPI, vol. 15(9), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nursaid Polater & Pietro Tricoli, 2022. "Technical Review of Traction Drive Systems for Light Railways," Energies, MDPI, vol. 15(9), pages 1-26, April.
    2. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.
    3. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    4. Jiansong Li & Jiyun Zhao & Xiaochun Zhang, 2020. "A Novel Energy Recovery System Integrating Flywheel and Flow Regeneration for a Hydraulic Excavator Boom System," Energies, MDPI, vol. 13(2), pages 1-25, January.
    5. Filippo Antoniolli, Andrigo & Naspolini, Helena Flávia & de Abreu, João Frederico & Rüther, Ricardo, 2022. "The role and benefits of residential rooftop photovoltaic prosumers in Brazil," Renewable Energy, Elsevier, vol. 187(C), pages 204-222.
    6. Xiao Yang & Long Chen & Xing Xu & Wei Wang & Qiling Xu & Yuzhen Lin & Zhiguang Zhou, 2017. "Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization," Energies, MDPI, vol. 10(11), pages 1-16, November.
    7. Yizhi Yan & Haolin Tang & Fan Wu & Rui Wang & Mu Pan, 2017. "One-Step Self-Assembly Synthesis α-Fe 2 O 3 with Carbon-Coated Nanoparticles for Stabilized and Enhanced Supercapacitors Electrode," Energies, MDPI, vol. 10(9), pages 1-13, August.
    8. Jura Arkhangelski & Pedro Roncero-Sánchez & Mahamadou Abdou-Tankari & Javier Vázquez & Gilles Lefebvre, 2019. "Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case," Energies, MDPI, vol. 12(14), pages 1-23, July.
    9. Anandh Ramesh Babu & Jelena Andric & Blago Minovski & Simone Sebben, 2021. "System-Level Modeling and Thermal Simulations of Large Battery Packs for Electric Trucks," Energies, MDPI, vol. 14(16), pages 1-15, August.
    10. Ovalle, Andres & Pouget, Julien & Bacha, Seddik & Gerbaud, Laurent & Vinot, Emmanuel & Sonier, Benoît, 2018. "Energy storage sizing methodology for mass-transit direct-current wayside support: Application to French railway company case study," Applied Energy, Elsevier, vol. 230(C), pages 1673-1684.
    11. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    12. Xiaolin Wang & Ka Wai Eric Cheng & Yat Chi Fong, 2018. "Non-Equal Voltage Cell Balancing for Battery and Super-Capacitor Source Package Management System Using Tapped Inductor Techniques," Energies, MDPI, vol. 11(5), pages 1-12, April.
    13. Mina Naguib & Aashit Rathore & Nathan Emery & Shiva Ghasemi & Ryan Ahmed, 2023. "Robust Electro-Thermal Modeling of Lithium-Ion Batteries for Electrified Vehicles Applications," Energies, MDPI, vol. 16(16), pages 1-20, August.
    14. Xintian Liu & Zhihao Wan & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2018. "A Unified Control Strategy for Inductor-Based Active Battery Equalisation Schemes," Energies, MDPI, vol. 11(2), pages 1-16, February.
    15. Muhammad Umair Mutarraf & Yacine Terriche & Kamran Ali Khan Niazi & Juan C. Vasquez & Josep M. Guerrero, 2018. "Energy Storage Systems for Shipboard Microgrids—A Review," Energies, MDPI, vol. 11(12), pages 1-32, December.
    16. Minhwan Seo & Taedong Goh & Minjun Park & Sang Woo Kim, 2018. "Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell," Energies, MDPI, vol. 11(7), pages 1-18, June.
    17. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    18. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    19. Coria, Gustavo & Penizzotto, Franco & Pringles, Rolando, 2019. "Economic analysis of photovoltaic projects: The Argentinian renewable generation policy for residential sectors," Renewable Energy, Elsevier, vol. 133(C), pages 1167-1177.
    20. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev, 2023. "Design Optimization of a Synchronous Homopolar Motor with Ferrite Magnets for Subway Train," Mathematics, MDPI, vol. 11(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:963-:d:323353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.