IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p877-d1589693.html
   My bibliography  Save this article

Decarbonization Pathway for Train Systems Using a Supercapacitor Energy Storage Charged by Distributed Solar PV Systems: A Case Study for Saudi Arabia

Author

Listed:
  • Bandar Jubran Alqahtani

    (Power Systems, Saudi Aramco, Dhahran 31311, Saudi Arabia
    Mechanical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Mussab Aleraij

    (Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Abdulhadi Alajmi

    (Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

Abstract

The study aims to introduce a novel system that powers a passenger train using supercapacitor energy storage that is charged by a solar carport system located at each train stop station. The system’s detailed design and its techno-economic analysis have been carried out and applied to a case study of a supercapacitor-based train (SC-Train) that connects an international airport with five major cities in the eastern region of Saudi Arabia. The objective is to reduce CO 2 emissions from Saudi Arabia’s transportation sector utilizing an electric-operated train energized by a solar carport system. The solar carport system is designed to have a capacity equal to the train’s energy consumption. Additionally, the supercapacitor has been selected as a storage device to utilize the regenerative braking system feature to enhance the train’s energy efficiency, which results in energy savings equivalent to 44.9% of total energy consumption. Finally, the project’s feasibility has been determined via the benefit–cost analysis approach, which yields a positive net present value of USD 367 million over 30 years.

Suggested Citation

  • Bandar Jubran Alqahtani & Mussab Aleraij & Abdulhadi Alajmi, 2025. "Decarbonization Pathway for Train Systems Using a Supercapacitor Energy Storage Charged by Distributed Solar PV Systems: A Case Study for Saudi Arabia," Energies, MDPI, vol. 18(4), pages 1-30, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:877-:d:1589693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergio Mayrink & Janaína G. Oliveira & Bruno H. Dias & Leonardo W. Oliveira & Juan S. Ochoa & Gustavo S. Rosseti, 2020. "Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation," Energies, MDPI, vol. 13(4), pages 1-16, February.
    2. repec:cdl:itsdav:qt9n905017 is not listed on IDEAS
    3. Alqahtani, Bandar Jubran & Patiño-Echeverri, Dalia, 2016. "Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar," Applied Energy, Elsevier, vol. 169(C), pages 927-936.
    4. Campos, Javier & de Rus, Gines & Barron, Iñaki, 2007. "The cost of building and operating a new high speed rail line," MPRA Paper 12396, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    2. Jakob Kapeller & Laura Porak & Bernhard Schuetz, 2025. "Transnationaler Schienenausbau in Europa - Hindernisse, Kosten und oekonomische Effekte," ICAE Working Papers 158, Johannes Kepler University, Institute for Comprehensive Analysis of the Economy.
    3. Zaaoumi, Anass & Asbik, Mohamed & Hafs, Hajar & Bah, Abdellah & Alaoui, Mohammed, 2021. "Thermal performance simulation analysis of solar field for parabolic trough collectors assigned for ambient conditions in Morocco," Renewable Energy, Elsevier, vol. 163(C), pages 1479-1494.
    4. Ginés de Rus & M. Pilar Socorro & Jorge Valido & Javier Campos, 2023. "Cost–Benefit Analysis of Transport Projects: Theoretical Framework and Practical Rules," Springer Books, in: Economic Evaluation of Transport Projects, chapter 0, pages 11-42, Springer.
    5. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    7. Fontina Petrakopoulou & Marina Olmeda-Delgado, 2019. "Studying the Reduction of Water Use in Integrated Solar Combined-Cycle Plants," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    8. Brodrick, Philip G. & Brandt, Adam R. & Durlofsky, Louis J., 2018. "Optimal design and operation of integrated solar combined cycles under emissions intensity constraints," Applied Energy, Elsevier, vol. 226(C), pages 979-990.
    9. Milani, Dia & Luu, Minh Tri & Nelson, Scott & Abbas, Ali, 2022. "Process control strategies for solar-powered carbon capture under transient solar conditions," Energy, Elsevier, vol. 239(PE).
    10. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    11. Yuanjing, Wang & Cheng, Zhang & Yanping, Zhang & Xiaohong, Huang, 2020. "Performance analysis of an improved 30 MW parabolic trough solar thermal power plant," Energy, Elsevier, vol. 213(C).
    12. Abdulrazzak Akroot & Mohamed Almaktar & Feras Alasali, 2024. "The Integration of Renewable Energy into a Fossil Fuel Power Generation System in Oil-Producing Countries: A Case Study of an Integrated Solar Combined Cycle at the Sarir Power Plant," Sustainability, MDPI, vol. 16(11), pages 1-29, June.
    13. Rossi, Iacopo & Sorce, Alessandro & Traverso, Alberto, 2017. "Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach," Applied Energy, Elsevier, vol. 190(C), pages 880-890.
    14. Ke Huang, 2024. "Positive Rail Voltage Rise Behavior and Inhibition Analysis of Regenerative Braking of Medium–Low-Speed Maglev Train," Energies, MDPI, vol. 17(7), pages 1-18, April.
    15. Antonio Rovira & Consuelo Sánchez & Manuel Valdés & Ruben Abbas & Rubén Barbero & María José Montes & Marta Muñoz & Javier Muñoz-Antón & Guillermo Ortega & Fernando Varela, 2018. "Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration," Energies, MDPI, vol. 11(5), pages 1-16, April.
    16. San Miguel, G. & Corona, B., 2018. "Economic viability of concentrated solar power under different regulatory frameworks in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 205-218.
    17. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    18. Hassan Mohammadi Pirouz & Amin Hajizadeh, 2020. "A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application: Topology and Control," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    19. Xiangjun Yu & Wenlei Lian & Ke Gao & Zhixing Jiang & Cheng Tian & Nan Sun & Hangbin Zheng & Xinrui Wang & Chao Song & Xianglei Liu, 2022. "Solar Thermochemical CO 2 Splitting Integrated with Supercritical CO 2 Cycle for Efficient Fuel and Power Generation," Energies, MDPI, vol. 15(19), pages 1-20, October.
    20. González-Portillo, Luis F. & Muñoz-Antón, Javier & Martínez-Val, José M., 2017. "An analytical optimization of thermal energy storage for electricity cost reduction in solar thermal electric plants," Applied Energy, Elsevier, vol. 185(P1), pages 531-546.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:877-:d:1589693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.