IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v68y2017icp44-52.html
   My bibliography  Save this article

Finding environmentally critical transmission sectors, transactions, and paths in global supply chain networks

Author

Listed:
  • Hanaka, Tesshu
  • Kagawa, Shigemi
  • Ono, Hirotaka
  • Kanemoto, Keiichiro

Abstract

In this article, we develop an economic network analysis to find environmentally critical transmission sectors, transactions and paths in global supply chain networks. The edge betweenness centrality in the global supply chain networks is newly formulated and a relationship between edge betweenness centrality and vertex betweenness centrality is further provided. The empirical analysis based on the world input-output database covering 35 industrial sectors and 41 countries and regions in 2008 shows that specifically, China's Electrical and Optical Equipment sector, which has a higher edge and vertex betweenness centrality, is the most critical sector in global supply chain networks in terms of spreading CO2 emissions along its supply chain paths. We suggest greener supply chain engagement centered around the China's Electrical and Optical Equipment sector and other key sectors identified in this study.

Suggested Citation

  • Hanaka, Tesshu & Kagawa, Shigemi & Ono, Hirotaka & Kanemoto, Keiichiro, 2017. "Finding environmentally critical transmission sectors, transactions, and paths in global supply chain networks," Energy Economics, Elsevier, vol. 68(C), pages 44-52.
  • Handle: RePEc:eee:eneeco:v:68:y:2017:i:c:p:44-52
    DOI: 10.1016/j.eneco.2017.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317303158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lenzen, Manfred, 2003. "Environmentally important paths, linkages and key sectors in the Australian economy," Structural Change and Economic Dynamics, Elsevier, vol. 14(1), pages 1-34, March.
    2. Sai Liang & Yu Feng & Ming Xu, 2015. "Structure of the Global Virtual Carbon Network: Revealing Important Sectors and Communities for Emission Reduction," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 307-320, April.
    3. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    4. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    5. Hazari, Bharat R, 1970. "Empirical Identification of Key Sectors in the Indian Economy," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 301-305, August.
    6. Defourny, Jacques & Thorbecke, Erik, 1984. "Structural Path Analysis and Multiplier Decomposition within a Social Accounting Matrix Framework," Economic Journal, Royal Economic Society, vol. 94(373), pages 111-136, March.
    7. Oshita, Yuko, 2012. "Identifying critical supply chain paths that drive changes in CO2 emissions," Energy Economics, Elsevier, vol. 34(4), pages 1041-1050.
    8. Shigemi Kagawa & Sangwon Suh & Yasushi Kondo & Keisuke Nansai, 2013. "Identifying environmentally important supply chain clusters in the automobile industry," Economic Systems Research, Taylor & Francis Journals, vol. 25(3), pages 265-286, September.
    9. Erik Dietzenbacher & Bart Los & Robert Stehrer & Marcel Timmer & Gaaitzen de Vries, 2013. "The Construction Of World Input-Output Tables In The Wiod Project," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 71-98, March.
    10. Anne Owen & Richard Wood & John Barrett & Andrew Evans, 2016. "Explaining value chain differences in MRIO databases through structural path decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 243-272, June.
    11. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    2. Huang, Li & Kelly, Scott & Shi, Xunpeng & Lv, Kangjuan & Lu, Xuan & Giurco, Damien, 2022. "Maximizing the effectiveness of carbon emissions abatement in China across carbon communities," Energy Economics, Elsevier, vol. 106(C).
    3. de Area Leão Pereira, Eder Johnson & de Santana Ribeiro, Luiz Carlos & da Silva Freitas, Lúcio Flávio & de Barros Pereira, Hernane Borges, 2020. "Brazilian policy and agribusiness damage the Amazon rainforest," Land Use Policy, Elsevier, vol. 92(C).
    4. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    5. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).
    6. Li Huang & Scott Kelly & Xuan Lu & Kangjuan Lv & Xunpeng Shi & Damien Giurco, 2019. "Carbon Communities and Hotspots for Carbon Emissions Reduction in China," Sustainability, MDPI, vol. 11(19), pages 1-29, October.
    7. Yawen Han & Wanli Xing & Hongchang Hao & Xin Du & Chongyang Liu, 2022. "Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    8. Meihui Jiang, 2022. "Locating the Principal Sectors for Carbon Emission Reduction on the Global Supply Chains by the Methods of Complex Network and Susceptible–Infective Model," Sustainability, MDPI, vol. 14(5), pages 1-13, February.
    9. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    10. Xuechun Yang & Sai Liang & Jianchuan Qi & Cuiyang Feng & Shen Qu & Ming Xu, 2021. "Identifying sectoral impacts on global scarce water uses from multiple perspectives," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1503-1517, December.
    11. Maeno, Keitaro & Tokito, Shohei & Kagawa, Shigemi, 2022. "CO2 mitigation through global supply chain restructuring," Energy Economics, Elsevier, vol. 105(C).
    12. Kayvan Miri Lavassani & Bahar Movahedi, 2021. "Firm-Level Analysis of Global Supply Chain Network: Role of Centrality on Firm’s Performance," International Journal of Global Business and Competitiveness, Springer, vol. 16(2), pages 86-103, December.
    13. Shao, Bohua & Asatani, Kimitaka & Sasaki, Hajime & Sakata, Ichiro, 2021. "Categorization of mergers and acquisitions using transaction network features," Research in International Business and Finance, Elsevier, vol. 57(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tokito, Shohei, 2018. "Environmentally-Targeted Sectors and Linkages in the Global Supply-Chain Complexity of Transport Equipment," Ecological Economics, Elsevier, vol. 150(C), pages 177-183.
    2. Llop, Maria & Ponce-Alifonso, Xavier, 2015. "Identifying the role of final consumption in structural path analysis: An application to water uses," Ecological Economics, Elsevier, vol. 109(C), pages 203-210.
    3. Kayoko Shironitta & Shunsuke Okamoto & Shigemi Kagawa, 2019. "Cross-country analysis of relationship between material input structures and consumption-based CO2 emissions," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 533-554, October.
    4. Anne Owen & Richard Wood & John Barrett & Andrew Evans, 2016. "Explaining value chain differences in MRIO databases through structural path decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 243-272, June.
    5. Tolga Kaya, 2017. "Unraveling the Energy use Network of Construction Sector in Turkey using Structural Path Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 31-43.
    6. Zhang, Yan & Li, Yaoguang & Hubacek, Klaus & Tian, Xin & Lu, Zhongming, 2019. "Analysis of CO2 transfer processes involved in global trade based on ecological network analysis," Applied Energy, Elsevier, vol. 233, pages 576-583.
    7. Zhiyong Yang & Wenjie Dong & Jinfeng Xiu & Rufeng Dai & Jieming Chou, 2015. "Structural Path Analysis of Fossil Fuel Based CO2 Emissions: A Case Study for China," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-25, September.
    8. Inácio Araúgo & Randall Jackson & Amir B. Ferreira Neto & Fernando Perobelli, 2018. "Environmental Costs of European Union Membership: A Structural Decomposition Analysis," Working Papers Working Paper 2018-04, Regional Research Institute, West Virginia University.
    9. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    10. Gui, Shusen & Mu, Hailin & Li, Nan, 2014. "Analysis of impact factors on China's CO2 emissions from the view of supply chain paths," Energy, Elsevier, vol. 74(C), pages 405-416.
    11. Oliver Schenker & Simon Koesler & Andreas Löschel, 2018. "On the effects of unilateral environmental policy on offshoring in multi‐stage production processes," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(4), pages 1221-1256, November.
    12. Thomas Grebel, 2019. "What a difference carbon leakage correction makes!," Journal of Evolutionary Economics, Springer, vol. 29(3), pages 939-971, July.
    13. Liu, Lan-Cui & Cheng, Lei & Zhao, Lu-Tao & Cao, Ying & Wang, Ce, 2020. "Investigating the significant variation of coal consumption in China in 2002-2017," Energy, Elsevier, vol. 207(C).
    14. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    15. Gino Sturla & Lorenzo Ciulla & Benedetto Rocchi, 2022. "Italy's Volumetric, Scarce and Social-scarce water footprint: a Hydro Economic Input-Output Analysis," Working Papers - Economics wp2022_17.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    16. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    17. K. Shironitta, 2016. "Global structural changes and their implication for territorial CO2 emissions," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-18, December.
    18. Lin, Jianyi & Hu, Yuanchao & Zhao, Xiaofeng & Shi, Longyu & Kang, Jiefeng, 2017. "Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints," Energy Policy, Elsevier, vol. 108(C), pages 460-466.
    19. Hong, Jingke & Shen, Qiping & Xue, Fan, 2016. "A multi-regional structural path analysis of the energy supply chain in China's construction industry," Energy Policy, Elsevier, vol. 92(C), pages 56-68.
    20. Yousaf Ali & Rosita Pretaroli & Muhammad Sabir & Claudio Socci & Francesca Severini, 2020. "Structural changes in carbon dioxide (CO2) emissions in the United Kingdom (UK): an emission multiplier product matrix (EMPM) approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1545-1564, December.

    More about this item

    Keywords

    Network analysis; Edge betweenness centrality; Vertex betweenness centrality; World input-output database; Global supply chain networks; CO2;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods
    • P18 - Political Economy and Comparative Economic Systems - - Capitalist Economies - - - Energy; Environment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:68:y:2017:i:c:p:44-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.