IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i1p373-382.html
   My bibliography  Save this article

The noncooperative fixed charge transportation problem

Author

Listed:
  • Sagratella, Simone
  • Schmidt, Marcel
  • Sudermann-Merx, Nathan

Abstract

We introduce the noncooperative fixed charge transportation problem (NFCTP), which is a game-theoretic extension of the fixed charge transportation problem. In the NFCTP, competing players solve coupled fixed charge transportation problems simultaneously. Three versions of the NFCTP are discussed and compared which differ in the treatment of shared social costs. This may be used from central authorities in order to find a socially balanced framework which is illustrated in a numerical study. Using techniques from generalized Nash equilibrium problems with mixed-integer variables we show the existence of Nash equilibria for these models and examine their structural properties. Since there is no unique equilibrium for the NFCTP, we also discuss how to solve the Nash selection problem and, finally, propose numerical methods for the computation of Nash equilibria which are based on mixed-integer programming.

Suggested Citation

  • Sagratella, Simone & Schmidt, Marcel & Sudermann-Merx, Nathan, 2020. "The noncooperative fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 373-382.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:1:p:373-382
    DOI: 10.1016/j.ejor.2019.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719310483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yogesh Agarwal & Yash Aneja, 2012. "Fixed-Charge Transportation Problem: Facets of the Projection Polyhedron," Operations Research, INFORMS, vol. 60(3), pages 638-654, June.
    2. Hultberg, Tim H. & Cardoso, Domingos M., 1997. "The teacher assignment problem: A special case of the fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 101(3), pages 463-473, September.
    3. Stein, Oliver & Sudermann-Merx, Nathan, 2018. "The noncooperative transportation problem and linear generalized Nash games," European Journal of Operational Research, Elsevier, vol. 266(2), pages 543-553.
    4. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    5. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    6. Warren M. Hirsch & George B. Dantzig, 1968. "The fixed charge problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 15(3), pages 413-424, September.
    7. Zhou, Jing & Lam, William H.K. & Heydecker, Benjamin G., 2005. "The generalized Nash equilibrium model for oligopolistic transit market with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 519-544, July.
    8. Oliver Stein & Nathan Sudermann-Merx, 2016. "The Cone Condition and Nonsmoothness in Linear Generalized Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 687-709, August.
    9. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    10. repec:diw:diwwpp:dp1475 is not listed on IDEAS
    11. Adlakha, Veena & Kowalski, Krzysztof, 2003. "A simple heuristic for solving small fixed-charge transportation problems," Omega, Elsevier, vol. 31(3), pages 205-211, June.
    12. Francisco Facchinei & Veronica Piccialli & Marco Sciandrone, 2011. "Decomposition algorithms for generalized potential games," Computational Optimization and Applications, Springer, vol. 50(2), pages 237-262, October.
    13. John William Stroup, 1967. "Letter to the Editor—Allocation of Launch Vehicles to Space Missions: A Fixed-Cost Transportation Problem," Operations Research, INFORMS, vol. 15(6), pages 1157-1163, December.
    14. Matthias Köppe & Christopher Thomas Ryan & Maurice Queyranne, 2011. "Rational Generating Functions and Integer Programming Games," Operations Research, INFORMS, vol. 59(6), pages 1445-1460, December.
    15. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    16. Warren E. Walker, 1976. "A Heuristic Adjacent Extreme Point Algorithm for the Fixed Charge Problem," Management Science, INFORMS, vol. 22(5), pages 587-596, January.
    17. Fisk, C. S., 1984. "Game theory and transportation systems modelling," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 301-313.
    18. Simone Sagratella, 2017. "Computing equilibria of Cournot oligopoly models with mixed-integer quantities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 549-565, December.
    19. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.
    20. Didier Aussel & Simone Sagratella, 2017. "Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 3-18, February.
    21. Friesz, Terry L. & Mookherjee, Reetabrata & Holguín-Veras, José & Rigdon, Matthew A., 2008. "Dynamic pricing in an urban freight environment," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 305-324, May.
    22. Fama, Eugene F & Laffer, Arthur B, 1972. "The Number of Firms and Competition," American Economic Review, American Economic Association, vol. 62(4), pages 670-674, September.
    23. Yaron Hollander & Joseph Prashker, 2006. "The applicability of non-cooperative game theory in transport analysis," Transportation, Springer, vol. 33(5), pages 481-496, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahman Khorramfar & Osman Y. Özaltın & Karl G. Kempf & Reha Uzsoy, 2022. "Managing Product Transitions: A Bilevel Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2828-2844, September.
    2. Rahman Khorramfar & Osman Ozaltin & Reha Uzsoy & Karl Kempf, 2024. "Coordinating Resource Allocation during Product Transitions Using a Multifollower Bilevel Programming Model," Papers 2401.17402, arXiv.org.
    3. Joanna Szkutnik-Rogoż & Jarosław Ziółkowski & Jerzy Małachowski & Mateusz Oszczypała, 2021. "Mathematical Programming and Solution Approaches for Transportation Optimisation in Supply Network," Energies, MDPI, vol. 14(21), pages 1-32, October.
    4. Gurwinder Singh & Amarinder Singh, 2021. "Solving fixed-charge transportation problem using a modified particle swarm optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1073-1086, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stein, Oliver & Sudermann-Merx, Nathan, 2018. "The noncooperative transportation problem and linear generalized Nash games," European Journal of Operational Research, Elsevier, vol. 266(2), pages 543-553.
    2. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    3. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    4. Aristide Mingozzi & Roberto Roberti, 2018. "An Exact Algorithm for the Fixed Charge Transportation Problem Based on Matching Source and Sink Patterns," Transportation Science, INFORMS, vol. 52(2), pages 229-238, March.
    5. Erika Buson & Roberto Roberti & Paolo Toth, 2014. "A Reduced-Cost Iterated Local Search Heuristic for the Fixed-Charge Transportation Problem," Operations Research, INFORMS, vol. 62(5), pages 1095-1106, October.
    6. Roberto Roberti & Enrico Bartolini & Aristide Mingozzi, 2015. "The Fixed Charge Transportation Problem: An Exact Algorithm Based on a New Integer Programming Formulation," Management Science, INFORMS, vol. 61(6), pages 1275-1291, June.
    7. Jesús Sáez Aguado, 2009. "Fixed Charge Transportation Problems: a new heuristic approach based on Lagrangean relaxation and the solving of core problems," Annals of Operations Research, Springer, vol. 172(1), pages 45-69, November.
    8. Rahman Khorramfar & Osman Y. Özaltın & Karl G. Kempf & Reha Uzsoy, 2022. "Managing Product Transitions: A Bilevel Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2828-2844, September.
    9. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    10. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    11. Lampariello, Lorenzo & Neumann, Christoph & Ricci, Jacopo M. & Sagratella, Simone & Stein, Oliver, 2021. "Equilibrium selection for multi-portfolio optimization," European Journal of Operational Research, Elsevier, vol. 295(1), pages 363-373.
    12. Lorenzo Lampariello & Simone Sagratella, 2020. "Numerically tractable optimistic bilevel problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 277-303, June.
    13. Francesco Cesarone & Lorenzo Lampariello & Davide Merolla & Jacopo Maria Ricci & Simone Sagratella & Valerio Giuseppe Sasso, 2023. "A bilevel approach to ESG multi-portfolio selection," Computational Management Science, Springer, vol. 20(1), pages 1-23, December.
    14. Rahman Khorramfar & Osman Ozaltin & Reha Uzsoy & Karl Kempf, 2024. "Coordinating Resource Allocation during Product Transitions Using a Multifollower Bilevel Programming Model," Papers 2401.17402, arXiv.org.
    15. Cesarone, Francesco & Lampariello, Lorenzo & Sagratella, Simone, 2019. "A risk-gain dominance maximization approach to enhanced index tracking," Finance Research Letters, Elsevier, vol. 29(C), pages 231-238.
    16. Lorenzo Lampariello & Christoph Neumann & Jacopo M. Ricci & Simone Sagratella & Oliver Stein, 2020. "An explicit Tikhonov algorithm for nested variational inequalities," Computational Optimization and Applications, Springer, vol. 77(2), pages 335-350, November.
    17. Hernández, Daniel & Muñoz, Juan Carlos & Giesen, Ricardo & Delgado, Felipe, 2015. "Analysis of real-time control strategies in a corridor with multiple bus services," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 83-105.
    18. Mojtaba Akbari & Saber Molla-Alizadeh-Zavardehi & Sadegh Niroomand, 2020. "Meta-heuristic approaches for fixed-charge solid transportation problem in two-stage supply chain network," Operational Research, Springer, vol. 20(1), pages 447-471, March.
    19. Simone Sagratella, 2017. "Computing equilibria of Cournot oligopoly models with mixed-integer quantities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 549-565, December.
    20. Dmytro KOZACHENKO & Vladyslav SKALOZUB & Bogdan GERA & Yuliia HERMANIUK & Ruslana KOROBIOVA & Aleksandra GORBOVA, 2019. "A Model Of Transit Freight Distribution On A Railway Network," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(3), pages 17-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:1:p:373-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.