IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7010-d664785.html
   My bibliography  Save this article

Mathematical Programming and Solution Approaches for Transportation Optimisation in Supply Network

Author

Listed:
  • Joanna Szkutnik-Rogoż

    (Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland)

  • Jarosław Ziółkowski

    (Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland)

  • Jerzy Małachowski

    (Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland)

  • Mateusz Oszczypała

    (Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland)

Abstract

The problem of transport is a special type of mathematical programming designed to search for the optimal distribution network, taking into account the set of suppliers and the set of recipients. This article proposes an innovative approach to solving the transportation problem and devises source codes in GNU Octave (version 3.4.3) to avoid the necessity of carrying out enormous calculations in traditional methods and to minimize transportation costs, fuel consumption, and CO 2 emission. The paper presents a numerical example of a solution to the transportation problem using: the northwest corner, the least cost in the matrix, the row minimum, and Vogel’s Approximation Methods (VAM). The joint use of mathematical programming and optimization was applicable to real conditions. The transport was carried out with medium load trucks. Both suppliers and recipients of materials were located geographically within the territory of the Republic of Poland. The presented model was supported by a numerical example with interpretation and visualization of the obtained results. The implementation of the proposed solution enables the user to develop an optimal transport plan for individually defined criteria.

Suggested Citation

  • Joanna Szkutnik-Rogoż & Jarosław Ziółkowski & Jerzy Małachowski & Mateusz Oszczypała, 2021. "Mathematical Programming and Solution Approaches for Transportation Optimisation in Supply Network," Energies, MDPI, vol. 14(21), pages 1-32, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7010-:d:664785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7010/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angelelli, E. & Morandi, V. & Savelsbergh, M. & Speranza, M.G., 2021. "System optimal routing of traffic flows with user constraints using linear programming," European Journal of Operational Research, Elsevier, vol. 293(3), pages 863-879.
    2. Aimé Kamgaing Kuiteing & Patrice Marcotte & Gilles Savard, 2018. "Pricing and revenue maximization over a multicommodity transportation network: the nonlinear demand case," Computational Optimization and Applications, Springer, vol. 71(3), pages 641-671, December.
    3. Sagratella, Simone & Schmidt, Marcel & Sudermann-Merx, Nathan, 2020. "The noncooperative fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 373-382.
    4. Jacek Pielecha & Kinga Skobiej & Karolina Kurtyka, 2020. "Exhaust Emissions and Energy Consumption Analysis of Conventional, Hybrid, and Electric Vehicles in Real Driving Cycles," Energies, MDPI, vol. 13(23), pages 1-21, December.
    5. Juman, Z.A.M.S. & Hoque, M.A., 2014. "A heuristic solution technique to attain the minimal total cost bounds of transporting a homogeneous product with varying demands and supplies," European Journal of Operational Research, Elsevier, vol. 239(1), pages 146-156.
    6. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    7. Kramer, Raphael & Maculan, Nelson & Subramanian, Anand & Vidal, Thibaut, 2015. "A speed and departure time optimization algorithm for the pollution-routing problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 782-787.
    8. Maria Cieśla & Aleksander Sobota & Marianna Jacyna, 2020. "Multi-Criteria Decision Making Process in Metropolitan Transport Means Selection Based on the Sharing Mobility Idea," Sustainability, MDPI, vol. 12(17), pages 1-21, September.
    9. M. Mathirajan & B. Meenakshi, 2004. "Experimental Analysis Of Some Variants Of Vogel'S Approximation Method," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 447-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarosław Ziółkowski & Józef Żurek & Jerzy Małachowski & Mateusz Oszczypała & Joanna Szkutnik-Rogoż, 2022. "Method for Calculating the Required Number of Transport Vehicles Supplying Aviation Fuel to Aircraft during Combat Tasks," Sustainability, MDPI, vol. 14(3), pages 1-18, January.
    2. Jarosław Ziółkowski & Aleksandra Lęgas & Elżbieta Szymczyk & Jerzy Małachowski & Mateusz Oszczypała & Joanna Szkutnik-Rogoż, 2022. "Optimization of the Delivery Time within the Distribution Network, Taking into Account Fuel Consumption and the Level of Carbon Dioxide Emissions into the Atmosphere," Energies, MDPI, vol. 15(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Izdebski & Marianna Jacyna, 2021. "An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises," Energies, MDPI, vol. 14(7), pages 1-23, April.
    2. Md. Ashraful Babu & M. A. Hoque & Md. Sharif Uddin, 2020. "A heuristic for obtaining better initial feasible solution to the transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 221-245, March.
    3. Jarosław Ziółkowski & Aleksandra Lęgas & Elżbieta Szymczyk & Jerzy Małachowski & Mateusz Oszczypała & Joanna Szkutnik-Rogoż, 2022. "Optimization of the Delivery Time within the Distribution Network, Taking into Account Fuel Consumption and the Level of Carbon Dioxide Emissions into the Atmosphere," Energies, MDPI, vol. 15(14), pages 1-22, July.
    4. Rafidah Md Noor & Nadia Bella Gustiani Rasyidi & Tarak Nandy & Raenu Kolandaisamy, 2020. "Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    5. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    6. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    7. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    8. Fei Han & Jian Wang & Lingli Huang & Yan Li & Liu He, 2023. "Modeling Impacts of Implementation Policies of Tradable Credit Schemes on Traffic Congestion in the Context of Traveler’s Cognitive Illusion," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    9. Manfred Dollinger & Gerhard Fischerauer, 2023. "Physics-Based Prediction for the Consumption and Emissions of Passenger Vehicles and Light Trucks up to 2050," Energies, MDPI, vol. 16(8), pages 1-29, April.
    10. Tomasz Boczar & Sebastian Borucki & Daniel Jancarczyk & Marcin Bernas & Pawel Kurtasz, 2022. "Application of Selected Machine Learning Techniques for Identification of Basic Classes of Partial Discharges Occurring in Paper-Oil Insulation Measured by Acoustic Emission Technique," Energies, MDPI, vol. 15(14), pages 1-13, July.
    11. Sasanka Katreddi & Sujan Kasani & Arvind Thiruvengadam, 2022. "A Review of Applications of Artificial Intelligence in Heavy Duty Trucks," Energies, MDPI, vol. 15(20), pages 1-20, October.
    12. Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    13. Chi Zhang & Binyue Xu & Jasronita Jasni & Mohd Amran Mohd Radzi & Norhafiz Azis & Qi Zhang, 2023. "Three Voltage Vector Duty Cycle Optimization Strategy of the Permanent Magnet Synchronous Motor Driving System for New Energy Electric Vehicles Based on Finite Set Model Predictive Control," Energies, MDPI, vol. 16(6), pages 1-18, March.
    14. Wojciech Gis & Maciej Gis & Jacek Pielecha & Kinga Skobiej, 2021. "Alternative Exhaust Emission Factors from Vehicles in On-Road Driving Tests," Energies, MDPI, vol. 14(12), pages 1-23, June.
    15. Behnke, Martin & Kirschstein, Thomas, 2017. "The impact of path selection on GHG emissions in city logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 320-336.
    16. Rahman Khorramfar & Osman Ozaltin & Reha Uzsoy & Karl Kempf, 2024. "Coordinating Resource Allocation during Product Transitions Using a Multifollower Bilevel Programming Model," Papers 2401.17402, arXiv.org.
    17. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    18. Sebastian Grzesiak & Adam Sulich, 2022. "Car Engines Comparative Analysis: Sustainable Approach," Energies, MDPI, vol. 15(14), pages 1-15, July.
    19. Onur Can Saka & Sinan Gürel & Tom Van Woensel, 2017. "Using cost change estimates in a local search heuristic for the pollution routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 557-587, March.
    20. Landry Frank Ineza Havugimana & Bolan Liu & Fanshuo Liu & Junwei Zhang & Ben Li & Peng Wan, 2023. "Review of Artificial Intelligent Algorithms for Engine Performance, Control, and Diagnosis," Energies, MDPI, vol. 16(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7010-:d:664785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.