IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v237y2014i3p957-965.html
   My bibliography  Save this article

Equilibrium in an ambiguity-averse mean–variance investors market

Author

Listed:
  • Pınar, Mustafa Ç.

Abstract

In a financial market composed of n risky assets and a riskless asset, where short sales are allowed and mean–variance investors can be ambiguity averse, i.e., diffident about mean return estimates where confidence is represented using ellipsoidal uncertainty sets, we derive a closed form portfolio rule based on a worst case max–min criterion. Then, in a market where all investors are ambiguity-averse mean–variance investors with access to given mean return and variance–covariance estimates, we investigate conditions regarding the existence of an equilibrium price system and give an explicit formula for the equilibrium prices. In addition to the usual equilibrium properties that continue to hold in our case, we show that the diffidence of investors in a homogeneously diffident (with bounded diffidence) mean–variance investors’ market has a deflationary effect on equilibrium prices with respect to a pure mean–variance investors’ market in equilibrium. Deflationary pressure on prices may also occur if one of the investors (in an ambiguity-neutral market) with no initial short position decides to adopt an ambiguity-averse attitude. We also establish a CAPM-like property that reduces to the classical CAPM in case all investors are ambiguity-neutral.

Suggested Citation

  • Pınar, Mustafa Ç., 2014. "Equilibrium in an ambiguity-averse mean–variance investors market," European Journal of Operational Research, Elsevier, vol. 237(3), pages 957-965.
  • Handle: RePEc:eee:ejores:v:237:y:2014:i:3:p:957-965
    DOI: 10.1016/j.ejor.2014.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714001313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Klibanoff, Peter & Marinacci, Massimo & Mukerji, Sujoy, 2009. "Recursive smooth ambiguity preferences," Journal of Economic Theory, Elsevier, vol. 144(3), pages 930-976, May.
    2. Bogdan Grechuk & Michael Zabarankin, 2012. "Optimal risk sharing with general deviation measures," Annals of Operations Research, Springer, vol. 200(1), pages 9-21, November.
    3. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2010. "CAPM and APT-like models with risk measures," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1166-1174, June.
    4. Hiroshi Konno & Hiroshi Shirakawa, 1995. "Existence Of A Nonnegative Equilibrium Price Vector In The Mean‐Variance Capital Market," Mathematical Finance, Wiley Blackwell, vol. 5(3), pages 233-246, July.
    5. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    6. Nielsen, Lars Tyge, 1987. "Portfolio Selection in the Mean-Variance Model: A Note," Journal of Finance, American Finance Association, vol. 42(5), pages 1371-1376, December.
    7. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    8. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    9. Won, Dong Chul & Yannelis, Nicholas C., 2011. "Equilibrium theory with satiable and non-ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 245-250, March.
    10. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    11. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, M., 2007. "Equilibrium with investors using a diversity of deviation measures," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3251-3268, November.
    12. Lars Tyge Nielsen, 1989. "Asset Market Equilibrium with Short-Selling," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 56(3), pages 467-473.
    13. Deng, Xiao-Tie & Li, Zhong-Fei & Wang, Shou-Yang, 2005. "A minimax portfolio selection strategy with equilibrium," European Journal of Operational Research, Elsevier, vol. 166(1), pages 278-292, October.
    14. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
    15. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    16. Lars Tyge Nielsen, 1990. "Equilibrium in CAPM Without a Riskless Asset," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(2), pages 315-324.
    17. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    18. Michael J. Best & Robert R. Grauer, 1991. "Sensitivity Analysis for Mean-Variance Portfolio Problems," Management Science, INFORMS, vol. 37(8), pages 980-989, August.
    19. Black, Fischer, 1972. "Capital Market Equilibrium with Restricted Borrowing," The Journal of Business, University of Chicago Press, vol. 45(3), pages 444-455, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    2. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    3. Kellerer, Belinda, 2019. "Portfolio Optimization and Ambiguity Aversion," Junior Management Science (JUMS), Junior Management Science e. V., vol. 4(3), pages 305-338.
    4. Ning Sun & Zaifu Yang, 2003. "Existence of Equilibrium and Zero-Beta Pricing Formula in the Capital Asset Pricing Model with Heterogeneous Beliefs," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 51-71, May.
    5. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    6. repec:dau:papers:123456789/5374 is not listed on IDEAS
    7. A. Paç & Mustafa Pınar, 2014. "Robust portfolio choice with CVaR and VaR under distribution and mean return ambiguity," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 875-891, October.
    8. Deng, Xiao-Tie & Li, Zhong-Fei & Wang, Shou-Yang, 2005. "A minimax portfolio selection strategy with equilibrium," European Journal of Operational Research, Elsevier, vol. 166(1), pages 278-292, October.
    9. Annalisa Fabretti & Stefano Herzel & Mustafa C. Pinar, 2014. "Delegated Portfolio Management under Ambiguity Aversion," CEIS Research Paper 304, Tor Vergata University, CEIS, revised 06 Feb 2014.
    10. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    11. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    12. Allen, D.E. & McAleer, M.J. & Powell, R.J. & Singh, A.K., 2015. "Down-side Risk Metrics as Portfolio Diversification Strategies across the GFC," Econometric Institute Research Papers EI2015-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Wenzelburger, Jan, 2008. "A Note on the Two-fund Separation Theorem," MPRA Paper 11014, University Library of Munich, Germany, revised 31 Sep 2008.
    14. Yilie Huang & Yanwei Jia & Xun Yu Zhou, 2024. "Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study," Papers 2412.16175, arXiv.org, revised Aug 2025.
    15. Mishra, Anil V., 2015. "Measures of equity home bias puzzle," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 293-312.
    16. Meyer, Steffen & Uhr, Charline, 2024. "Ambiguity and private investors’ behavior after forced fund liquidations," Journal of Financial Economics, Elsevier, vol. 156(C).
    17. Guidolin, Massimo & Liu, Hening, 2016. "Ambiguity Aversion and Underdiversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(4), pages 1297-1323, August.
    18. Sato Norihisa, 2010. "Existence of Competitive Equilibrium in Unbounded Exchange Economies with Satiation: A Note," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 10(1), pages 1-22, July.
    19. Nengjiu Ju & Jianjun Miao, 2012. "Ambiguity, Learning, and Asset Returns," Econometrica, Econometric Society, vol. 80(2), pages 559-591, March.
    20. Berk, Jonathan B., 1997. "Necessary Conditions for the CAPM," Journal of Economic Theory, Elsevier, vol. 73(1), pages 245-257, March.
    21. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2017. "Portfolio selection with mental accounts and estimation risk," Journal of Empirical Finance, Elsevier, vol. 41(C), pages 161-186.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:237:y:2014:i:3:p:957-965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.