IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i3p701-708.html
   My bibliography  Save this article

Equilibruim approach of asset pricing under Lévy process

Author

Listed:
  • Fu, Jun
  • Yang, Hailiang

Abstract

This work considers the equilibrium approach of asset pricing for Lévy process. It derives the equity premium and pricing kernel analytically for the stock price process, obtains an equilibrium option pricing formula, and explains some empirical evidence such as the negative variance risk premium, implied volatility smirk, and negative skewness risk premium by comparing the physical and risk-neutral distributions of the log return. Different from most of the current studies in equilibrium pricing under jump diffusion models, this work models the underlying asset price as the exponential of a Lévy process and thus allows nearly an arbitrage distribution of the jump component.

Suggested Citation

  • Fu, Jun & Yang, Hailiang, 2012. "Equilibruim approach of asset pricing under Lévy process," European Journal of Operational Research, Elsevier, vol. 223(3), pages 701-708.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:3:p:701-708 DOI: 10.1016/j.ejor.2012.06.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712004924
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    3. Jun Liu, 2005. "An Equilibrium Model of Rare-Event Premia and Its Implication for Option Smirks," Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 131-164.
    4. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-778, April.
    5. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    8. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    9. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    10. Martzoukos, Spiros H. & Trigeorgis, Lenos, 2002. "Real (investment) options with multiple sources of rare events," European Journal of Operational Research, Elsevier, vol. 136(3), pages 696-706, February.
    11. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    12. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    13. Rossello, Damiano, 2008. "MaxVaR with non-Gaussian distributed returns," European Journal of Operational Research, Elsevier, vol. 189(1), pages 159-171, August.
    14. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    15. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    16. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    17. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    18. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    19. Joshua D. Coval, 2001. "Expected Option Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 983-1009, June.
    20. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    21. Ole E. Barndorff-Nielsen, 1997. "Processes of normal inverse Gaussian type," Finance and Stochastics, Springer, vol. 2(1), pages 41-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Giampietro & Massimo Guidolin & Manuela Pedio, 2015. "Can No-Arbitrage SDF Models with Regime Shifts Explain the Correlations Between Commodity, Stock, and Bond Returns?," BAFFI CAREFIN Working Papers 1619, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    2. Shen, Yang & Siu, Tak Kuen, 2013. "Stochastic differential game, Esscher transform and general equilibrium under a Markovian regime-switching Lévy model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 757-768.
    3. Mitra, Sovan & Date, Paresh & Mamon, Rogemar & Wang, I-Chieh, 2013. "Pricing and risk management of interest rate swaps," European Journal of Operational Research, Elsevier, vol. 228(1), pages 102-111.
    4. Ruan, Xinfeng & Zhu, Wenli & Huang, Jiexiang & Zhang, Jin E., 2016. "Equilibrium asset pricing under the Lévy process with stochastic volatility and moment risk premiums," Economic Modelling, Elsevier, vol. 54(C), pages 326-338.
    5. Ben-zhang Yang & Jia Yue & Nan-jing Huang, 2017. "Variance swaps under L\'{e}vy process with stochastic volatility and stochastic interest rate in incomplete market," Papers 1712.10105, arXiv.org, revised Jan 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:3:p:701-708. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.