IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v196y2009i1p225-233.html
   My bibliography  Save this article

Modelling and optimization of average travel time for a metro line by simulation and response surface methodology

Author

Listed:
  • YalçInkaya, Özgür
  • Mirac Bayhan, G.

Abstract

This research presents a modelling and solution approach based on discrete-event simulation and response surface methodology for dealing with average passenger travel time optimization problem inherent to the metro planning process. The objective is to find the headways optimizing passenger average travel time with a satisfactory rate of carriage fullness. Due to some physical constraints, traffic safety and legal requirements, vehicle speeds cannot be raised any further to decrease travel time. But travel time can be optimized by arranging headways (i.e. the time period between the departure times of two consecutive transportation vehicles) in a timetable. In the presented approach, simulation metamodels that best fit the data collected from the simulated experiments are constructed to describe the relationship between the responses (average travel time and rate of carriage fullness) and input factors (headways). Then, the Derringer-Suich multi-response optimization procedure is used to determine the optimal settings of the input factors that produce the minimum value of the average travel time by providing a proper rate of carriage fullness. This methodology is applied for a real metro line, and good quality solutions are obtained with reduced number of experiments that needed to provide sufficient information for statistically acceptable results.

Suggested Citation

  • YalçInkaya, Özgür & Mirac Bayhan, G., 2009. "Modelling and optimization of average travel time for a metro line by simulation and response surface methodology," European Journal of Operational Research, Elsevier, vol. 196(1), pages 225-233, July.
  • Handle: RePEc:eee:ejores:v:196:y:2009:i:1:p:225-233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00285-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Fang & Zeng, Xiaogang, 2008. "Optimization of transit route network, vehicle headways and timetables for large-scale transit networks," European Journal of Operational Research, Elsevier, vol. 186(2), pages 841-855, April.
    2. Guan, J.F. & Yang, Hai & Wirasinghe, S.C., 2006. "Simultaneous optimization of transit line configuration and passenger line assignment," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 885-902, December.
    3. Gharbi, A. & Kenne, J. P., 2000. "Production and preventive maintenance rates control for a manufacturing system: An experimental design approach," International Journal of Production Economics, Elsevier, vol. 65(3), pages 275-287, May.
    4. D'Angelo, Andrea & Gastaldi, Massimo & Levialdi, Nathan, 1998. "Performance analysis of a flexible manufacturing system: A statistical approach," International Journal of Production Economics, Elsevier, vol. 56(1), pages 47-59, September.
    5. Mahadevan, B. & Narendran, T. T., 1993. "Buffer levels and choice of material handling device in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 69(2), pages 166-176, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:pal:jorsoc:v:61:y:2010:i:1:d:10.1057_jors.2009.124 is not listed on IDEAS
    2. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    3. Shi, Wen & Shang, Jennifer & Liu, Zhixue & Zuo, Xiaolu, 2014. "Optimal design of the auto parts supply chain for JIT operations: Sequential bifurcation factor screening and multi-response surface methodology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 664-676.
    4. Zhang, Jianhua & Wang, Shuliang & Zhang, Zhaojun & Zou, Kuansheng & Shu, Zhan, 2016. "Characteristics on hub networks of urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 502-507.
    5. Xu, Xin-yue & Liu, Jun & Li, Hai-ying & Jiang, Man, 2016. "Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 130-148.
    6. Shi, Wen & Kleijnen, Jack P.C. & Liu, Zhixue, 2014. "Factor screening for simulation with multiple responses: Sequential bifurcation," European Journal of Operational Research, Elsevier, vol. 237(1), pages 136-147.
    7. Shi, Wen & Liu, Zhixue & Shang, Jennifer & Cui, Yujia, 2013. "Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain," European Journal of Operational Research, Elsevier, vol. 229(3), pages 695-706.
    8. repec:spr:annopr:v:240:y:2016:i:1:d:10.1007_s10479-015-2019-x is not listed on IDEAS
    9. Yin, Jiateng & Tang, Tao & Yang, Lixing & Gao, Ziyou & Ran, Bin, 2016. "Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 178-210.
    10. Mu, Shi & Dessouky, Maged, 2013. "Efficient dispatching rules on double tracks with heterogeneous train traffic," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 45-64.
    11. Zhang, Jianhua & Song, Bo & Zhang, Zhaojun & Liu, Haikuan, 2014. "An approach for modeling vulnerability of the network of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 127-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:196:y:2009:i:1:p:225-233. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.