Route Choice on Transit Networks with Online Information at Stops
Author
Abstract
Suggested Citation
DOI: 10.1287/trsc.1040.0109
Download full text from publisher
References listed on IDEAS
- Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
- Jia Hao Wu & Michael Florian & Patrice Marcotte, 1994. "Transit Equilibrium Assignment: A Model and Solution Algorithms," Transportation Science, INFORMS, vol. 28(3), pages 193-203, August.
- Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
- J. K. Jolliffe & T. P. Hutchinson, 1975. "A Behavioural Explanation of the Association Between Bus and Passenger Arrivals at a Bus Stop," Transportation Science, INFORMS, vol. 9(3), pages 248-282, August.
- LeBlanc, Larry J., 1988. "Transit system network design," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 383-390, October.
- Sang Nguyen & Stefano Pallottino & Michel Gendreau, 1998. "Implicit Enumeration of Hyperpaths in a Logit Model for Transit Networks," Transportation Science, INFORMS, vol. 32(1), pages 54-64, February.
- Philippe H. J. Marguier & Avishai Ceder, 1984. "Passenger Waiting Strategies for Overlapping Bus Routes," Transportation Science, INFORMS, vol. 18(3), pages 207-230, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Trozzi, Valentina & Gentile, Guido & Bell, Michael G.H. & Kaparias, Ioannis, 2013. "Dynamic user equilibrium in public transport networks with passenger congestion and hyperpaths," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 266-285.
- Valentina Trozzi & Guido Gentile & Ioannis Kaparias & Michael Bell, 2015. "Effects of Countdown Displays in Public Transport Route Choice Under Severe Overcrowding," Networks and Spatial Economics, Springer, vol. 15(3), pages 823-842, September.
- Nassir, Neema & Hickman, Mark & Ma, Zhen-Liang, 2019. "A strategy-based recursive path choice model for public transit smart card data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 528-548.
- Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2021. "Impacts of real-time information levels in public transport: A large-scale case study using an adaptive passenger path choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 155-182.
- Padma Seetharaman, 2017. "Modelling risk aversion using a disaggregate stochastic process model in congested transit networks," Public Transport, Springer, vol. 9(3), pages 549-569, October.
- Tomhave, Benjamin J. & Khani, Alireza, 2022. "Refined choice set generation and the investigation of multi-criteria transit route choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 484-500.
- Liu, Yang & Blandin, Sebastien & Samaranayake, Samitha, 2019. "Stochastic on-time arrival problem in transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 122-138.
- Taoyuan Yang & Peng Zhao & Xiangming Yao, 2020. "A Method to Estimate URT Passenger Spatial-Temporal Trajectory with Smart Card Data and Train Schedules," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
- Cats, Oded & Koutsopoulos, Haris N. & Burghout, Wilco & Toledo, Tomer, 2013. "Effect of real-time transit information on dynamic path choice of passengers," Working papers in Transport Economics 2013:28, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
- Mohammad Reza Amin-Naseri & Vahid Baradaran, 2015. "Accurate Estimation of Average Waiting Time in Public Transportation Systems," Transportation Science, INFORMS, vol. 49(2), pages 213-222, May.
- Caspar Chorus & Theo Arentze & Harry Timmermans, 2007. "Information impact on quality of multimodal travel choices: conceptualizations and empirical analyses," Transportation, Springer, vol. 34(6), pages 625-645, November.
- Oded Cats & Zafeira Gkioulou, 2017. "Modeling the impacts of public transport reliability and travel information on passengers’ waiting-time uncertainty," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 247-270, September.
- YalçInkaya, Özgür & Mirac Bayhan, G., 2009. "Modelling and optimization of average travel time for a metro line by simulation and response surface methodology," European Journal of Operational Research, Elsevier, vol. 196(1), pages 225-233, July.
- Khani, Alireza, 2019. "An online shortest path algorithm for reliable routing in schedule-based transit networks considering transfer failure probability," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 549-564.
- Wen, Jian & Nassir, Neema & Zhao, Jinhua, 2019. "Value of demand information in autonomous mobility-on-demand systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 346-359.
- Kumar, Pramesh & Khani, Alireza, 2022. "Planning of integrated mobility-on-demand and urban transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 499-521.
- Larsen, Odd I. & Sunde, yvind, 2008. "Waiting time and the role and value of information in scheduled transport," Research in Transportation Economics, Elsevier, vol. 23(1), pages 41-52, January.
- Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
- Li, Qianfei & (Will) Chen, Peng & (Marco) Nie, Yu, 2015. "Finding optimal hyperpaths in large transit networks with realistic headway distributions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 98-108.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Qianfei & (Will) Chen, Peng & (Marco) Nie, Yu, 2015. "Finding optimal hyperpaths in large transit networks with realistic headway distributions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 98-108.
- Cortés, Cristián E. & Jara-Moroni, Pedro & Moreno, Eduardo & Pineda, Cristobal, 2013. "Stochastic transit equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 29-44.
- Belgacem Bouzaïene-Ayari & Michel Gendreau & Sang Nguyen, 2001. "Modeling Bus Stops in Transit Networks: A Survey and New Formulations," Transportation Science, INFORMS, vol. 35(3), pages 304-321, August.
- Nassir, Neema & Hickman, Mark & Ma, Zhen-Liang, 2019. "A strategy-based recursive path choice model for public transit smart card data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 528-548.
- Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
- Padma Seetharaman, 2017. "Modelling risk aversion using a disaggregate stochastic process model in congested transit networks," Public Transport, Springer, vol. 9(3), pages 549-569, October.
- Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
- Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
- Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
- Roberto Cominetti & José Correa, 2001. "Common-Lines and Passenger Assignment in Congested Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 250-267, August.
- Sang Nguyen & Stefano Pallottino & Federico Malucelli, 2001. "A Modeling Framework for Passenger Assignment on a Transport Network with Timetables," Transportation Science, INFORMS, vol. 35(3), pages 238-249, August.
- Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
- Agostino Nuzzolo & Francesco Russo & Umberto Crisalli, 2001. "A Doubly Dynamic Schedule-based Assignment Model for Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 268-285, August.
- Mohammad Nurul Hassan & Taha Hossein Rashidi & Neema Nassir, 2021. "Consideration of different travel strategies and choice set sizes in transit path choice modelling," Transportation, Springer, vol. 48(2), pages 723-746, April.
- Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
- García, Ricardo & Marín, Angel, 2005. "Network equilibrium with combined modes: models and solution algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 223-254, March.
- Larsen, Odd I. & Sunde, yvind, 2008. "Waiting time and the role and value of information in scheduled transport," Research in Transportation Economics, Elsevier, vol. 23(1), pages 41-52, January.
- Valentina Trozzi & Guido Gentile & Ioannis Kaparias & Michael Bell, 2015. "Effects of Countdown Displays in Public Transport Route Choice Under Severe Overcrowding," Networks and Spatial Economics, Springer, vol. 15(3), pages 823-842, September.
- Shang, Pan & Xiong, Yufan & Guo, Jifu & Xian, Kai & Yu, Yun & Xu, Han, 2024. "A modeling framework to integrate frequency - and schedule-based passenger assignment approaches for coordinated path choice and space-time trajectory estimation based on multi-source observations," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
- Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
More about this item
Keywords
transit assignment; route choice with online information; networks with common transit lines; boarding probabilities at transit stops;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:39:y:2005:i:3:p:289-297. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.