IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Local search algorithms for political districting

Listed author(s):
  • Ricca, Federica
  • Simeone, Bruno
Registered author(s):

    Electoral district planning plays an important role in a political election, especially when a majority voting rule is adopted, because it interferes in the translation of votes into seats. The practice of gerrymandering can easily take place if the shape of electoral districts is not controlled. In this paper we consider the following formulation of the political districting problem: given a connected graph (territory) with n nodes (territorial units), partition its set of nodes into k classes such that the subgraph induced by each class (district) is connected and a given vector of functions of the partition is minimized. The nonlinearity of such functions and the connectivity constraints make this network optimization problem a very hard one. Thus, the use of local search heuristics is justified. Experimentation on a sample of medium-large real-life instances has been carried out in order to compare the performance of four local search metaheuristics, i.e., Descent, Tabu Search, Simulated Annealing, and Old Bachelor Acceptance. Our experiments with Italian political districting provided strong evidence in favor of the use of automatic procedures. Actually, except for Descent, all local search algorithms showed a very good performance for this problem. In particular, in our sample of regions, Old Bachelor Acceptance produced the best results in the majority of the cases, especially when the objective function was compactness. Moreover, the district maps generated by this heuristic dominate the institutional district plan with respect to all the districting criteria under consideration. When properly designed, automatic procedures tend to be impartial and yield good districting alternatives. Moreover, they are remarkably fast, and thus they allow for the exploration of a large number of scenarios.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 189 (2008)
    Issue (Month): 3 (September)
    Pages: 1409-1426

    in new window

    Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1409-1426
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Pierre Hansen & Brigitte Jaumard & Christophe Meyer & Bruno Simeone & Valeria Doring, 2003. "Maximum Split Clustering Under Connectivity Constraints," Journal of Classification, Springer;The Classification Society, vol. 20(2), pages 143-180, September.
    2. R. S. Garfinkel & G. L. Nemhauser, 1970. "Optimal Political Districting by Implicit Enumeration Techniques," Management Science, INFORMS, vol. 16(8), pages 495-508, April.
    3. Anuj Mehrotra & Ellis L. Johnson & George L. Nemhauser, 1998. "An Optimization Based Heuristic for Political Districting," Management Science, INFORMS, vol. 44(8), pages 1100-1114, August.
    4. Bozkaya, Burcin & Erkut, Erhan & Laporte, Gilbert, 2003. "A tabu search heuristic and adaptive memory procedure for political districting," European Journal of Operational Research, Elsevier, vol. 144(1), pages 12-26, January.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1409-1426. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.