IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04514344.html
   My bibliography  Save this paper

Monte carlo within simulated annealing for integral constrained optimizations

Author

Listed:
  • Roberto Casarin
  • Bertrand Maillet

    (EM - EMLyon Business School)

  • Anthony Osuntuyi

Abstract

For years, Value-at-Risk and Expected Shortfall have been well established measures of market risk and the Basel Committee on Banking Supervision recommends their use when controlling risk. But their computations might be intractable if we do not rely on simplifying assumptions, in particular on distributions of returns. One of the difficulties is linked to the need for Integral Constrained Optimizations. In this article, two new stochastic optimization-based Simulated Annealing algorithms are proposed for addressing problems associated with the use of statistical methods that rely on extremizing a non-necessarily differentiable criterion function, therefore facing the problem of the computation of a non-analytically reducible integral constraint. We first provide an illustrative example when maximizing an integral constrained likelihood for the stress-strength reliability that confirms the effectiveness of the algorithms. Our results indicate no clear difference in convergence, but we favor the use of the problem approximation strategy styled algorithm as it is less expensive in terms of computing time. Second, we run a classical financial problem such as portfolio optimization, showing the potential of our proposed methods in financial applications.

Suggested Citation

  • Roberto Casarin & Bertrand Maillet & Anthony Osuntuyi, 2024. "Monte carlo within simulated annealing for integral constrained optimizations," Post-Print hal-04514344, HAL.
  • Handle: RePEc:hal:journl:hal-04514344
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:hal:journl:hal-02312334 is not listed on IDEAS
    2. Peter J. M. van Laarhoven & Emile H. L. Aarts & Jan Karel Lenstra, 1992. "Job Shop Scheduling by Simulated Annealing," Operations Research, INFORMS, vol. 40(1), pages 113-125, February.
    3. Akash Tayal & Surya Prakash Singh, 2018. "Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem," Annals of Operations Research, Springer, vol. 270(1), pages 489-514, November.
    4. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
    5. Crama, Y. & Schyns, M., 2003. "Simulated annealing for complex portfolio selection problems," European Journal of Operational Research, Elsevier, vol. 150(3), pages 546-571, November.
    6. Meng, Xiaochun & Taylor, James W., 2020. "Estimating Value-at-Risk and Expected Shortfall using the intraday low and range data," European Journal of Operational Research, Elsevier, vol. 280(1), pages 191-202.
    7. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    8. Christophe Boucher & Gregory Jannin & Patrick Kouontchou & Bertrand Maillet, 2013. "An Economic Evaluation of Model Risk in Long-term Asset Allocations," Review of International Economics, Wiley Blackwell, vol. 21(3), pages 475-491, August.
    9. Christophe Boucher & Gregory Jannin & Patrick Kouontchou & Bertrand Maillet, 2013. "An Economic Evaluation of Model Risk in Long-term Asset Allocations," Review of International Economics, Wiley Blackwell, vol. 21(3), pages 475-491, August.
    10. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    11. Lysa Porth & Milton Boyd & Jeffrey Pai, 2016. "Reducing Risk Through Pooling and Selective Reinsurance Using Simulated Annealing: An Example from Crop Insurance," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 41(2), pages 163-191, September.
    12. Paul Bergey & Cliff Ragsdale & Mangesh Hoskote, 2003. "A Simulated Annealing Genetic Algorithm for the Electrical Power Districting Problem," Annals of Operations Research, Springer, vol. 121(1), pages 33-55, July.
    13. Shoshana Anily & Awi Federgruen, 1987. "Ergodicity in Parametric Nonstationary Markov Chains: An Application to Simulated Annealing Methods," Operations Research, INFORMS, vol. 35(6), pages 867-874, December.
    14. Björn Bick & Holger Kraft & Claus Munk, 2013. "Solving Constrained Consumption-Investment Problems by Simulation of Artificial Market Strategies," Management Science, INFORMS, vol. 59(2), pages 485-503, June.
    15. Saralees Nadarajah, 2011. "The exponentiated exponential distribution: a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 219-251, September.
    16. Ricca, Federica & Simeone, Bruno, 2008. "Local search algorithms for political districting," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1409-1426, September.
    17. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
    18. Cramer,Jan Salomon, 1989. "Econometric Applications of Maximum Likelihood Methods," Cambridge Books, Cambridge University Press, number 9780521378574, December.
    19. Etgar, Ran & Shtub, Avraham & LeBlanc, Larry J., 1997. "Scheduling projects to maximize net present value -- the case of time-dependent, contingent cash flows," European Journal of Operational Research, Elsevier, vol. 96(1), pages 90-96, January.
    20. Debasis Kundu & Rameshwar D. Gupta, 2005. "Estimation of P[Y > X] for generalized exponential distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(3), pages 291-308, June.
    21. Clara Calvo & Carlos Ivorra & Vicente Liern, 2012. "On the Computation of the Efficient Frontier of the Portfolio Selection Problem," Journal of Applied Mathematics, John Wiley & Sons, vol. 2012(1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    2. Massimiliano Kaucic & Mojtaba Moradi & Mohmmad Mirzazadeh, 2019. "Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-28, December.
    3. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
    4. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
    5. Yanık, Seda & Sürer, Özge & Öztayşi, Başar, 2016. "Designing sustainable energy regions using genetic algorithms and location-allocation approach," Energy, Elsevier, vol. 97(C), pages 161-172.
    6. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    7. Babaei, Sadra & Sepehri, Mohammad Mehdi & Babaei, Edris, 2015. "Multi-objective portfolio optimization considering the dependence structure of asset returns," European Journal of Operational Research, Elsevier, vol. 244(2), pages 525-539.
    8. Leyman, Pieter & Vanhoucke, Mario, 2017. "Capital- and resource-constrained project scheduling with net present value optimization," European Journal of Operational Research, Elsevier, vol. 256(3), pages 757-776.
    9. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    10. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "A new method for mean-variance portfolio optimization with cardinality constraints," Annals of Operations Research, Springer, vol. 205(1), pages 213-234, May.
    11. Antonio Diglio & Stefan Nickel & Francisco Saldanha-da-Gama, 2020. "Towards a stochastic programming modeling framework for districting," Annals of Operations Research, Springer, vol. 292(1), pages 249-285, September.
    12. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
    13. Cui, Tianxiang & Du, Nanjiang & Yang, Xiaoying & Ding, Shusheng, 2024. "Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    14. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    15. K. Liagkouras & K. Metaxiotis, 2018. "A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem," Annals of Operations Research, Springer, vol. 267(1), pages 281-319, August.
    16. Juan A. Díaz & Dolores E. Luna, 2017. "Primal and dual bounds for the vertex p-median problem with balance constraints," Annals of Operations Research, Springer, vol. 258(2), pages 613-638, November.
    17. Paolo Giudici & Gloria Polinesi & Alessandro Spelta, 2022. "Network models to improve robot advisory portfolios," Annals of Operations Research, Springer, vol. 313(2), pages 965-989, June.
    18. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    19. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    20. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04514344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.