IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v204y2013i1p271-29910.1007-s10479-012-1267-2.html
   My bibliography  Save this article

Political Districting: from classical models to recent approaches

Author

Listed:
  • Federica Ricca
  • Andrea Scozzari
  • Bruno Simeone

Abstract

The Political Districting problem has been studied since the 60’s and many different models and techniques have been proposed with the aim of preventing districts’ manipulation which may favor some specific political party (gerrymandering). A variety of Political Districting models and procedures was provided in the Operations Research literature, based on single- or multiple-objective optimization. Starting from the forerunning papers published in the 60’s, this article reviews some selected optimization models and algorithms for Political Districting which gave rise to the main lines of research on this topic in the Operations Research literature of the last five decades. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Federica Ricca & Andrea Scozzari & Bruno Simeone, 2013. "Political Districting: from classical models to recent approaches," Annals of Operations Research, Springer, vol. 204(1), pages 271-299, April.
  • Handle: RePEc:spr:annopr:v:204:y:2013:i:1:p:271-299:10.1007/s10479-012-1267-2
    DOI: 10.1007/s10479-012-1267-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1267-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1267-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Carlos Duque & Raúl Ramos & Jordi Suriñach, 2007. "Supervised Regionalization Methods: A Survey," International Regional Science Review, , vol. 30(3), pages 195-220, July.
    2. Yamada, Takeo & Takahashi, Hideo & Kataoka, Seiji, 1996. "A heuristic algorithm for the mini-max spanning forest problem," European Journal of Operational Research, Elsevier, vol. 91(3), pages 565-572, June.
    3. T. C. Hu & Andrew B. Kahng & Chung-Wen Albert Tsao, 1995. "Old Bachelor Acceptance: A New Class of Non-Monotone Threshold Accepting Methods," INFORMS Journal on Computing, INFORMS, vol. 7(4), pages 417-425, November.
    4. Bozkaya, Burcin & Erkut, Erhan & Laporte, Gilbert, 2003. "A tabu search heuristic and adaptive memory procedure for political districting," European Journal of Operational Research, Elsevier, vol. 144(1), pages 12-26, January.
    5. Chou, Chung-I & Li, S.P., 2006. "Taming the Gerrymander—Statistical physics approach to Political Districting Problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 799-808.
    6. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    7. GARFINKEL, Robert S. & NEMHAUSER, Geroge L., 1970. "Optimal political districting by implicit enumeration techniques," LIDAM Reprints CORE 54, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. George, John A. & Lamar, Bruce W. & Wallace, Chris A., 1997. "Political district determination using large-scale network optimization," Socio-Economic Planning Sciences, Elsevier, vol. 31(1), pages 11-28, March.
    9. R. S. Garfinkel & G. L. Nemhauser, 1970. "Optimal Political Districting by Implicit Enumeration Techniques," Management Science, INFORMS, vol. 16(8), pages 495-508, April.
    10. Ricca, Federica & Simeone, Bruno, 2008. "Local search algorithms for political districting," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1409-1426, September.
    11. Anuj Mehrotra & Ellis L. Johnson & George L. Nemhauser, 1998. "An Optimization Based Heuristic for Political Districting," Management Science, INFORMS, vol. 44(8), pages 1100-1114, August.
    12. S. W. Hess & J. B. Weaver & H. J. Siegfeldt & J. N. Whelan & P. A. Zitlau, 1965. "Nonpartisan Political Redistricting by Computer," Operations Research, INFORMS, vol. 13(6), pages 998-1006, December.
    13. R. C. Carlson & G. L. Nemhauser, 1966. "Scheduling to Minimize Interaction Cost," Operations Research, INFORMS, vol. 14(1), pages 52-58, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan A. Díaz & Dolores E. Luna, 2017. "Primal and dual bounds for the vertex p-median problem with balance constraints," Annals of Operations Research, Springer, vol. 258(2), pages 613-638, November.
    2. Sebastián Moreno & Jordi Pereira & Wilfredo Yushimito, 2020. "A hybrid K-means and integer programming method for commercial territory design: a case study in meat distribution," Annals of Operations Research, Springer, vol. 286(1), pages 87-117, March.
    3. Anderson Kenji Hirose & Cassius Tadeu Scarpin & José Eduardo Pécora Junior, 2020. "Goal programming approach for political districting in Santa Catarina State: Brazil," Annals of Operations Research, Springer, vol. 287(1), pages 209-232, April.
    4. Santini, Alberto & Malaguti, Enrico, 2024. "The min-Knapsack problem with compactness constraints and applications in statistics," European Journal of Operational Research, Elsevier, vol. 312(1), pages 385-397.
    5. Paul Harrenstein & Marie-Louise Lackner & Martin Lackner, 2019. "A Mathematical Analysis of an Election System Proposed by Gottlob Frege," Papers 1907.03643, arXiv.org, revised Sep 2020.
    6. Yin Xia & Dianfeng Liu & Yaolin Liu & Jianhua He & Xiaofeng Hong, 2014. "Alternative Zoning Scenarios for Regional Sustainable Land Use Controls in China: A Knowledge-Based Multiobjective Optimisation Model," IJERPH, MDPI, vol. 11(9), pages 1-28, August.
    7. Yao, Ming-Jong & Lin, Jen-Yen & Lin, Yu-Liang & Fang, Shu-Cherng, 2020. "An integrated algorithm for solving multi-customer joint replenishment problem with districting consideration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    8. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2021. "Solutions for districting problems with chance-constrained balancing requirements," Omega, Elsevier, vol. 103(C).
    9. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    10. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2023. "Approximation schemes for districting problems with probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 307(1), pages 233-248.
    11. Antonio Diglio & Stefan Nickel & Francisco Saldanha-da-Gama, 2020. "Towards a stochastic programming modeling framework for districting," Annals of Operations Research, Springer, vol. 292(1), pages 249-285, September.
    12. Verónica Arredondo & Miguel Martínez-Panero & Teresa Peña & Federica Ricca, 2021. "Mathematical political districting taking care of minority groups," Annals of Operations Research, Springer, vol. 305(1), pages 375-402, October.
    13. Djordje Dugošija & Aleksandar Savić & Zoran Maksimović, 2020. "A new integer linear programming formulation for the problem of political districting," Annals of Operations Research, Springer, vol. 288(1), pages 247-263, May.
    14. Eduardo Álvarez-Miranda & Camilo Campos-Valdés & Maurcio Morales Quiroga & Matías Moreno-Faguett & Jordi Pereira, 2020. "A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter," Mathematics, MDPI, vol. 8(9), pages 1-26, August.
    15. Ríos-Mercado, Roger Z. & Bard, Jonathan F., 2019. "An exact algorithm for designing optimal districts in the collection of waste electric and electronic equipment through an improved reformulation," European Journal of Operational Research, Elsevier, vol. 276(1), pages 259-271.
    16. Sandoval, M. Gabriela & Álvarez-Miranda, Eduardo & Pereira, Jordi & Ríos-Mercado, Roger Z. & Díaz, Juan A., 2022. "A novel districting design approach for on-time last-mile delivery: An application on an express postal company," Omega, Elsevier, vol. 113(C).
    17. Benadè, Gerdus & Ho-Nguyen, Nam & Hooker, J.N., 2022. "Political districting without geography," Operations Research Perspectives, Elsevier, vol. 9(C).
    18. David F. Muñoz & Héctor Gardida & Hugo Velázquez & Jorge D. Ayala, 2022. "Simulation models to support the preliminary electoral results program for the Mexican Electoral Institute," Annals of Operations Research, Springer, vol. 316(2), pages 1141-1156, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Álvarez-Miranda & Camilo Campos-Valdés & Maurcio Morales Quiroga & Matías Moreno-Faguett & Jordi Pereira, 2020. "A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter," Mathematics, MDPI, vol. 8(9), pages 1-26, August.
    2. Balázs Fleiner & Balázs Nagy & Attila Tasnádi, 2017. "Optimal partisan districting on planar geographies," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 879-888, December.
    3. Sebastián Moreno & Jordi Pereira & Wilfredo Yushimito, 2020. "A hybrid K-means and integer programming method for commercial territory design: a case study in meat distribution," Annals of Operations Research, Springer, vol. 286(1), pages 87-117, March.
    4. Djordje Dugošija & Aleksandar Savić & Zoran Maksimović, 2020. "A new integer linear programming formulation for the problem of political districting," Annals of Operations Research, Springer, vol. 288(1), pages 247-263, May.
    5. Christian Haas & Lee Hachadoorian & Steven O Kimbrough & Peter Miller & Frederic Murphy, 2020. "Seed-Fill-Shift-Repair: A redistricting heuristic for civic deliberation," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-34, September.
    6. Hyun Kim & Yongwan Chun & Kamyoung Kim, 2015. "Delimitation of Functional Regions Using a p-Regions Problem Approach," International Regional Science Review, , vol. 38(3), pages 235-263, July.
    7. Bruno, Giuseppe & Genovese, Andrea & Piccolo, Carmela, 2017. "Territorial amalgamation decisions in local government: Models and a case study from Italy," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 61-72.
    8. Xin Tang & Ameur Soukhal & Vincent T’kindt, 2014. "Preprocessing for a map sectorization problem by means of mathematical programming," Annals of Operations Research, Springer, vol. 222(1), pages 551-569, November.
    9. F Caro & T Shirabe & M Guignard & A Weintraub, 2004. "School redistricting: embedding GIS tools with integer programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 836-849, August.
    10. Juan Carlos Duque & Raúl Ramos & Jordi Suriñach, 2007. "Supervised Regionalization Methods: A Survey," International Regional Science Review, , vol. 30(3), pages 195-220, July.
    11. Anderson Kenji Hirose & Cassius Tadeu Scarpin & José Eduardo Pécora Junior, 2020. "Goal programming approach for political districting in Santa Catarina State: Brazil," Annals of Operations Research, Springer, vol. 287(1), pages 209-232, April.
    12. Han, Jialin & Hu, Yaoguang & Mao, Mingsong & Wan, Shuping, 2020. "A multi-objective districting problem applied to agricultural machinery maintenance service network," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1120-1130.
    13. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    14. Sommer Gentry & Eric Chow & Allan Massie & Dorry Segev, 2015. "Gerrymandering for Justice: Redistricting U.S. Liver Allocation," Interfaces, INFORMS, vol. 45(5), pages 462-480, October.
    15. Fernando Tavares-Pereira & José Figueira & Vincent Mousseau & Bernard Roy, 2007. "Multiple criteria districting problems," Annals of Operations Research, Springer, vol. 154(1), pages 69-92, October.
    16. Ricca, Federica & Simeone, Bruno, 2008. "Local search algorithms for political districting," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1409-1426, September.
    17. Ram Gopalan & Steven O. Kimbrough & Frederic H. Murphy & Nicholas Quintus, 2013. "The Philadelphia Districting Contest: Designing Territories for City Council Based Upon the 2010 Census," Interfaces, INFORMS, vol. 43(5), pages 477-489, October.
    18. M Blais & S D Lapierre & G Laporte, 2003. "Solving a home-care districting problem in an urban setting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(11), pages 1141-1147, November.
    19. María Salazar-Aguilar & Roger Ríos-Mercado & Mauricio Cabrera-Ríos, 2011. "New Models for Commercial Territory Design," Networks and Spatial Economics, Springer, vol. 11(3), pages 487-507, September.
    20. Verónica Arredondo & Miguel Martínez-Panero & Teresa Peña & Federica Ricca, 2021. "Mathematical political districting taking care of minority groups," Annals of Operations Research, Springer, vol. 305(1), pages 375-402, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:204:y:2013:i:1:p:271-299:10.1007/s10479-012-1267-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.