IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i2p519-538.html
   My bibliography  Save this article

Mixed-integer linear programming formulations and column generation algorithms for the Minimum Normalized Cuts problem on networks

Author

Listed:
  • Ponce, Diego
  • Puerto, Justo
  • Temprano, Francisco

Abstract

This paper deals with the k-way normalized cut problem in complex networks. It presents a methodology that uses mathematical optimization to provide mixed-integer linear programming formulations for the problem. The paper also develops a branch-and-price algorithm for the above-mentioned problem which scales better than the compact formulations. Additionally, a heuristic algorithm which is able to approximate large-scale image problems in those cases where the exact methods are not applicable is presented. Extensive computational experiments assess the usefulness of these methods to solve the k-way normalized cut problem. Finally, we have applied the minimum normalized cut objective function to the segmentation of actual images, showing the applicability of the introduced methodology.

Suggested Citation

  • Ponce, Diego & Puerto, Justo & Temprano, Francisco, 2024. "Mixed-integer linear programming formulations and column generation algorithms for the Minimum Normalized Cuts problem on networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 519-538.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:2:p:519-538
    DOI: 10.1016/j.ejor.2024.02.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724001668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.02.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calvino, José J. & López-Haro, Miguel & Muñoz-Ocaña, Juan M. & Puerto, Justo & Rodríguez-Chía, Antonio M., 2022. "Segmentation of scanning-transmission electron microscopy images using the ordered median problem," European Journal of Operational Research, Elsevier, vol. 302(2), pages 671-687.
    2. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    3. Olivier Goldschmidt & Dorit S. Hochbaum, 1994. "A Polynomial Algorithm for the k-cut Problem for Fixed k," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 24-37, February.
    4. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    5. Benati, Stefano & Ponce, Diego & Puerto, Justo & Rodríguez-Chía, Antonio M., 2022. "A branch-and-price procedure for clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 297(3), pages 817-830.
    6. Federica Ricca & Andrea Scozzari & Bruno Simeone, 2013. "Political Districting: from classical models to recent approaches," Annals of Operations Research, Springer, vol. 204(1), pages 271-299, April.
    7. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    8. Benati, Stefano & Puerto, Justo & Rodríguez-Chía, Antonio M., 2017. "Clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 261(1), pages 43-53.
    9. Sukeda, Issey & Miyauchi, Atsushi & Takeda, Akiko, 2023. "A study on modularity density maximization: Column generation acceleration and computational complexity analysis," European Journal of Operational Research, Elsevier, vol. 309(2), pages 516-528.
    10. Samuel Deleplanque & Martine Labbé & Diego Ponce & Justo Puerto, 2020. "A Branch-Price-and-Cut Procedure for the Discrete Ordered Median Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 582-599, July.
    11. Maravalle, Maurizio & Simeone, Bruno & Naldini, Rosella, 1997. "Clustering on trees," Computational Statistics & Data Analysis, Elsevier, vol. 24(2), pages 217-234, April.
    12. Costa, Alberto, 2015. "MILP formulations for the modularity density maximization problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 14-21.
    13. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    14. Verónica Arredondo & Miguel Martínez-Panero & Teresa Peña & Federica Ricca, 2021. "Mathematical political districting taking care of minority groups," Annals of Operations Research, Springer, vol. 305(1), pages 375-402, October.
    15. G. Agarwal & D. Kempe, 2008. "Modularity-maximizing graph communities via mathematical programming," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(3), pages 409-418, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    2. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    3. Benati, Stefano & Ponce, Diego & Puerto, Justo & Rodríguez-Chía, Antonio M., 2022. "A branch-and-price procedure for clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 297(3), pages 817-830.
    4. Calvino, José J. & López-Haro, Miguel & Muñoz-Ocaña, Juan M. & Puerto, Justo & Rodríguez-Chía, Antonio M., 2022. "Segmentation of scanning-transmission electron microscopy images using the ordered median problem," European Journal of Operational Research, Elsevier, vol. 302(2), pages 671-687.
    5. Luisa I. Martínez-Merino & Diego Ponce & Justo Puerto, 2023. "Constraint relaxation for the discrete ordered median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 538-561, October.
    6. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    7. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    8. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    9. Miriam Kießling & Sascha Kurz & Jörg Rambau, 2021. "An exact column-generation approach for the lot-type design problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 741-780, October.
    10. Han, Jialin & Zhang, Jiaxiang & Guo, Haoyue & Zhang, Ning, 2024. "Optimizing location-routing and demand allocation in the household waste collection system using a branch-and-price algorithm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 958-975.
    11. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    12. Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
    13. Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
    14. Rigo, Cezar Antônio & Seman, Laio Oriel & Camponogara, Eduardo & Morsch Filho, Edemar & Bezerra, Eduardo Augusto & Munari, Pedro, 2022. "A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service," European Journal of Operational Research, Elsevier, vol. 303(1), pages 168-183.
    15. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    16. Yael Grushka-Cockayne & Bert De Reyck & Zeger Degraeve, 2008. "An Integrated Decision-Making Approach for Improving European Air Traffic Management," Management Science, INFORMS, vol. 54(8), pages 1395-1409, August.
    17. Guy Desaulniers & Diego Pecin & Claudio Contardo, 2019. "Selective pricing in branch-price-and-cut algorithms for vehicle routing," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 147-168, June.
    18. Walteros, Jose L. & Vogiatzis, Chrysafis & Pasiliao, Eduardo L. & Pardalos, Panos M., 2014. "Integer programming models for the multidimensional assignment problem with star costs," European Journal of Operational Research, Elsevier, vol. 235(3), pages 553-568.
    19. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    20. Jiliu Li & Zhixing Luo & Roberto Baldacci & Hu Qin & Zhou Xu, 2023. "A New Exact Algorithm for Single-Commodity Vehicle Routing with Split Pickups and Deliveries," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 31-49, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:2:p:519-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.