IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v34y2025icp32-43.html
   My bibliography  Save this article

Sparse simulation-based estimator built on quantiles

Author

Listed:
  • Stolfi, Paola
  • Bernardi, Mauro
  • Petrella, Lea

Abstract

The method of simulated quantiles is extended to a general multivariate framework and to provide sparse estimation of the scaling matrix. The method is based on the minimisation of a distance between appropriate statistics evaluated on the true and synthetic data simulated from the postulated model. Those statistics are functions of the quantiles providing an effective way to deal with distributions that do not admit moments of any order like the α–Stable or the Tukey lambda distribution. The lack of a natural ordering represents the major challenge for the extension of the method to the multivariate framework, which is addressed by considering the notion of projectional quantile. The SCAD ℓ1–penalty is then introduced in order to achieve sparse estimation of the scaling matrix which is mostly responsible for the curse of dimensionality. The asymptotic properties of the proposed estimator have been discussed and the method is illustrated and tested on several synthetic datasets simulated from the Elliptical Stable distribution for which alternative methods are recognised to perform poorly.

Suggested Citation

  • Stolfi, Paola & Bernardi, Mauro & Petrella, Lea, 2025. "Sparse simulation-based estimator built on quantiles," Econometrics and Statistics, Elsevier, vol. 34(C), pages 32-43.
  • Handle: RePEc:eee:ecosta:v:34:y:2025:i:c:p:32-43
    DOI: 10.1016/j.ecosta.2022.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306222000065
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2022.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:34:y:2025:i:c:p:32-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.