IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i11p2866-2877.html
   My bibliography  Save this article

Sparse seemingly unrelated regression modelling: Applications in finance and econometrics

Author

Listed:
  • Wang, Hao

Abstract

A sparse seemingly unrelated regression (SSUR) model is proposed to generate substantively relevant structures in the high-dimensional distributions of seemingly unrelated regression (SUR) model parameters. The SSUR framework includes prior specifications, posterior computations using Markov chain Monte Carlo methods, evaluations of model uncertainty, and model structure searches. Extensions of the SSUR model to dynamic models embed general structure constraints and model uncertainty in dynamic models. The models represent specific varieties of models recently developed in the growing high-dimensional sparse modelling literature. Two simulated examples illustrate the model and highlight questions regarding model uncertainty, searching, and comparison. The model is then applied to two real-world examples in macroeconomics and finance, according to which its identified structures have practical significance.

Suggested Citation

  • Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2866-2877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00130-1
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Michael & Kohn, Robert, 2000. "Nonparametric seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 98(2), pages 257-281, October.
    2. Carlos M. Carvalho & Hélène Massam & Mike West, 2007. "Simulation of hyper-inverse Wishart distributions in graphical models," Biometrika, Biometrika Trust, vol. 94(3), pages 647-659.
    3. Geske, Robert & Roll, Richard, 1983. " The Fiscal and Monetary Linkage between Stock Returns and Inflation," Journal of Finance, American Finance Association, vol. 38(1), pages 1-33, March.
    4. Kontoghiorghes, E. J. & Clarke, M. R. B., 1995. "An alternative approach for the numerical solution of seemingly unrelated regression equations models," Computational Statistics & Data Analysis, Elsevier, vol. 19(4), pages 369-377, April.
    5. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
    6. Hao Wang & Mike West, 2009. "Bayesian analysis of matrix normal graphical models," Biometrika, Biometrika Trust, vol. 96(4), pages 821-834.
    7. Michael J. Daniels, 2002. "Bayesian analysis of covariance matrices and dynamic models for longitudinal data," Biometrika, Biometrika Trust, vol. 89(3), pages 553-566, August.
    8. C. M. Carvalho & J. G. Scott, 2009. "Objective Bayesian model selection in Gaussian graphical models," Biometrika, Biometrika Trust, vol. 96(3), pages 497-512.
    9. Griffiths, W.E., 2001. "Bayesian Inference in the Seemingly Unrelated Regressions Models," Department of Economics - Working Papers Series 793, The University of Melbourne.
    10. Foschi, Paolo & Belsley, David A. & Kontoghiorghes, Erricos J., 2003. "A comparative study of algorithms for solving seemingly unrelated regressions models," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 3-35, October.
    11. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
    12. Smith M. & Kohn R., 2002. "Parsimonious Covariance Matrix Estimation for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1141-1153, December.
    13. Dobra, Adrian & Hans, Chris & Jones, Beatrix & Nevins, J.R.Joseph R. & Yao, Guang & West, Mike, 2004. "Sparse graphical models for exploring gene expression data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 196-212, July.
    14. Lee, Bong-Soo, 1992. " Causal Relations among Stock Returns, Interest Rates, Real Activity, and Inflation," Journal of Finance, American Finance Association, vol. 47(4), pages 1591-1603, September.
    15. Fama, Eugene F, 1981. "Stock Returns, Real Activity, Inflation, and Money," American Economic Review, American Economic Association, vol. 71(4), pages 545-565, September.
    16. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
    17. Foschi, Paolo & Kontoghiorghes, Erricos J., 2002. "Seemingly unrelated regression model with unequal size observations: computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 211-229, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    2. Anindya Bhadra & Bani K. Mallick, 2013. "Joint High-Dimensional Bayesian Variable and Covariance Selection with an Application to eQTL Analysis," Biometrics, The International Biometric Society, vol. 69(2), pages 447-457, June.
    3. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    4. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    5. Urbi Garay & Enrique ter Horst & German Molina & Abel Rodriguez, 2016. "Bayesian Nonparametric Measurement of Factor Betas and Clustering with Application to Hedge Fund Returns," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-23, March.
    6. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    7. repec:gam:jecnmx:v:4:y:2016:i:1:p:13:d:65308 is not listed on IDEAS
    8. repec:eee:ecosta:v:3:y:2017:i:c:p:3-22 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2866-2877. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.