IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v34y2025icp1-13.html

Sensitivity of Bounds on ATEs under Survey Nonresponse

Author

Listed:
  • Lafférs, Lukáš
  • Nedela, Roman

Abstract

The problem of bounding average treatment effects under survey nonresponse, when data collection entails sequential efforts made to obtain response, can be formulated as an optimization problem. It is shown that this formulation is equivalent to the original problem and further extends it into a sensitivity analysis of the identifying assumptions. Departure from the assumption of treatment exogeneity can be controlled via an interpretable parameter and thus allows to quantify the importance of the crucial identification assumption.

Suggested Citation

  • Lafférs, Lukáš & Nedela, Roman, 2025. "Sensitivity of Bounds on ATEs under Survey Nonresponse," Econometrics and Statistics, Elsevier, vol. 34(C), pages 1-13.
  • Handle: RePEc:eee:ecosta:v:34:y:2025:i:c:p:1-13
    DOI: 10.1016/j.ecosta.2022.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306222000053
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2022.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lafférs, Lukáš & Mellace, Giovanni, 2020. "Identification of the average treatment effect when SUTVA is violated," Discussion Papers on Economics 3/2020, University of Southern Denmark, Department of Economics.
    2. Bruce D. Meyer & Wallace K. C. Mok & James X. Sullivan, 2015. "Household Surveys in Crisis," Journal of Economic Perspectives, American Economic Association, vol. 29(4), pages 199-226, Fall.
    3. Cantoni, Eva & de Luna, Xavier, 2020. "Semiparametric inference with missing data: Robustness to outliers and model misspecification," Econometrics and Statistics, Elsevier, vol. 16(C), pages 108-120.
    4. David McKenzie, 2017. "Identifying and Spurring High-Growth Entrepreneurship: Experimental Evidence from a Business Plan Competition," American Economic Review, American Economic Association, vol. 107(8), pages 2278-2307, August.
    5. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    6. James J. Heckman, 1977. "Sample Selection Bias As a Specification Error (with an Application to the Estimation of Labor Supply Functions)," NBER Working Papers 0172, National Bureau of Economic Research, Inc.
    7. Alexander Torgovitsky, 2019. "Nonparametric Inference on State Dependence in Unemployment," Econometrica, Econometric Society, vol. 87(5), pages 1475-1505, September.
    8. Luc Behaghel & Bruno Crépon & Marc Gurgand & Thomas Le Barbanchon, 2015. "Please Call Again: Correcting Nonresponse Bias in Treatment Effect Models," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1070-1080, December.
    9. Charles F. Manski, 2007. "Partial Identification Of Counterfactual Choice Probabilities," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1393-1410, November.
    10. Ori Heffetz & Daniel B. Reeves, 2019. "Difficulty of Reaching Respondents and Nonresponse Bias: Evidence from Large Government Surveys," The Review of Economics and Statistics, MIT Press, vol. 101(1), pages 176-191, March.
    11. Ro'ee Levy, 2021. "Social Media, News Consumption, and Polarization: Evidence from a Field Experiment," American Economic Review, American Economic Association, vol. 111(3), pages 831-870, March.
    12. Lafférs, Lukáš & Nedela, Roman, 2017. "Sensitivity of the bounds on the ATE in the presence of sample selection," Economics Letters, Elsevier, vol. 158(C), pages 84-87.
    13. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    14. repec:hal:pseose:halshs-01245539 is not listed on IDEAS
    15. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
    16. Gerard J. Van Den Berg & Maarten Lindeboom & Peter J. Dolton, 2006. "Survey non‐response and the duration of unemployment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 585-604, July.
    17. Lovett, Nicholas & Xue, Yuhan, 2020. "Family first or the kindness of strangers? Foster care placements and adult outcomes," Labour Economics, Elsevier, vol. 65(C).
    18. Freyberger, Joachim & Horowitz, Joel L., 2015. "Identification and shape restrictions in nonparametric instrumental variables estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 41-53.
    19. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    2. Martin Huber & Lukáš Lafférs, 2022. "Bounds on direct and indirect effects under treatment/mediator endogeneity and outcome attrition," Econometric Reviews, Taylor & Francis Journals, vol. 41(10), pages 1141-1163, November.
    3. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
    4. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    5. Lafférs, Lukáš & Nedela, Roman, 2017. "Sensitivity of the bounds on the ATE in the presence of sample selection," Economics Letters, Elsevier, vol. 158(C), pages 84-87.
    6. Bulat Gafarov, 2019. "Simple subvector inference on sharp identified set in affine models," Papers 1904.00111, arXiv.org, revised Jul 2024.
    7. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    9. Lukáš Lafférs, 2019. "Bounding average treatment effects using linear programming," Empirical Economics, Springer, vol. 57(3), pages 727-767, September.
    10. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    11. Kamat, Vishal, 2019. "Identification with Latent Choice Sets," TSE Working Papers 19-1031, Toulouse School of Economics (TSE).
    12. Kamat, Vishal, 2024. "Identifying the effects of a program offer with an application to Head Start," Journal of Econometrics, Elsevier, vol. 240(1).
    13. Gazeaud, Jules & Khan, Nausheen & Mvukiyehe, Eric & Sterck, Olivier, 2023. "With or without him? Experimental evidence on cash grants and gender-sensitive trainings in Tunisia," Journal of Development Economics, Elsevier, vol. 165(C).
    14. L. Castell & P. Sillard, 2021. "Le traitement du biais de selection endogene dans les enquetes aupres des menages par modele de Heckman," Documents de Travail de l'Insee - INSEE Working Papers m2021-02, Institut National de la Statistique et des Etudes Economiques.
    15. Vira Semenova, 2023. "Debiased Machine Learning of Aggregated Intersection Bounds and Other Causal Parameters," Papers 2303.00982, arXiv.org, revised May 2025.
    16. Gafarov, Bulat, 2025. "Simple subvector inference on sharp identified set in affine models," Journal of Econometrics, Elsevier, vol. 249(PB).
    17. Demuynck, Thomas, 2015. "Bounding average treatment effects: A linear programming approach," Economics Letters, Elsevier, vol. 137(C), pages 75-77.
    18. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    19. Tarek Azzam & Michael Bates & David Fairris, 2019. "Do Learning Communities Increase First Year College Retention? Testing Sample Selection and External Validity of Randomized Control Trials," Working Papers 202002, University of California at Riverside, Department of Economics.
    20. Alexander Torgovitsky, 2019. "Partial identification by extending subdistributions," Quantitative Economics, Econometric Society, vol. 10(1), pages 105-144, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:34:y:2025:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.