IDEAS home Printed from https://ideas.repec.org/a/eee/ecoser/v12y2015icp55-70.html
   My bibliography  Save this article

Threats to food production and water quality in the Murray–Darling Basin of Australia

Author

Listed:
  • Holland, Jonathan E.
  • Luck, Gary W.
  • Max Finlayson, C.

Abstract

We analyse how salinity, acidity and erosion threaten the ecosystem services of food production and the regulation of water quality in the Murray–Darling Basin, Australia’s most important food producing region. We used the Drivers-Pressures-State-Impact-Response (DPSIR) framework, to show that each of these threats undermines the functioning of the Basin’s agro-ecosystems and the two major ecosystem services (four other ecosystem services are briefly considered). These threats are driven by natural processes (e.g. rainfall) and anthropogenic activity (e.g. land clearing), and this leads to pressures exerted by hydrology, nutrient cycles and wind. Satisfactory information is available on the state of acidity and wind erosion, but information on the state of water erosion and salinity is inadequate. The impact of these threats on food production was primarily by reducing crop yield, while the impacts on water quality were to increase sediment, salt and nutrient loads. Management responses were either adaptive or mitigative; the former targets impacts while the latter focuses on drivers and pressures. Most management responses involved trade-offs between ecosystem services, although some synergies were found. Scale and spatial variability strongly influence the selection of responses. Understanding the mechanisms underpinning land degrading threats and the associated relationships allows better assessment on impacts to ecosystem services.

Suggested Citation

  • Holland, Jonathan E. & Luck, Gary W. & Max Finlayson, C., 2015. "Threats to food production and water quality in the Murray–Darling Basin of Australia," Ecosystem Services, Elsevier, vol. 12(C), pages 55-70.
  • Handle: RePEc:eee:ecoser:v:12:y:2015:i:c:p:55-70
    DOI: 10.1016/j.ecoser.2015.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2212041615000261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecoser.2015.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Conyers, M.K. & Hume, I. & Summerell, G. & Slinger, D. & Mitchell, M. & Cawley, R., 2008. "The ionic composition of the streams of the mid-Murrumbidgee River: Implications for the management of downstream salinity," Agricultural Water Management, Elsevier, vol. 95(5), pages 598-606, May.
    2. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    3. Dunin, F. X., 2002. "Integrating agroforestry and perennial pastures to mitigate water logging and secondary salinity," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 259-270, February.
    4. Crosbie, Russell S. & Hughes, Justin D. & Friend, John & Baldwin, Basil J., 2007. "Monitoring the hydrological impact of land use change in a small agricultural catchment affected by dryland salinity in central NSW, Australia," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 43-53, March.
    5. Khan, S. & Abbas, A. & Blackwell, J. & Gabriel, H.F. & Ahmad, A., 2007. "Hydrogeological assessment of serial biological concentration of salts to manage saline drainage," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 64-72, August.
    6. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    7. Thayalakumaran, T. & Bethune, M.G. & McMahon, T.A., 2007. "Achieving a salt balance--Should it be a management objective?," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 1-12, August.
    8. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Arabic," IWMI Books, Reports H041261, International Water Management Institute.
    9. Bryan, Brett Anthony & Crossman, Neville David, 2013. "Impact of multiple interacting financial incentives on land use change and the supply of ecosystem services," Ecosystem Services, Elsevier, vol. 4(C), pages 60-72.
    10. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham, Hung Vuong & Sperotto, Anna & Torresan, Silvia & Acuña, Vicenç & Jorda-Capdevila, Dídac & Rianna, Guido & Marcomini, Antonio & Critto, Andrea, 2019. "Coupling scenarios of climate and land-use change with assessments of potential ecosystem services at the river basin scale," Ecosystem Services, Elsevier, vol. 40(C).
    2. Quentin Farmar-Bowers, 2015. "Finding Ways to Improve Australia’s Food Security Situation," Agriculture, MDPI, vol. 5(2), pages 1-27, May.
    3. Josias Sanou & Anna Tengberg & Hugues Roméo Bazié & David Mingasson & Madelene Ostwald, 2023. "Assessing Trade-Offs between Agricultural Productivity and Ecosystem Functions: A Review of Science-Based Tools?," Land, MDPI, vol. 12(7), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher O. AKINBILE & Andrew E. ERAZUA & Toju E. BABALOLA & Fidelis O. AJIBADE, 2016. "Environmental implications of animal wastes pollution on agricultural soil and water quality," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(3), pages 172-180.
    2. Cunha, Henrique & Loureiro, Dália & Sousa, Gonçalo & Covas, Dídia & Alegre, Helena, 2019. "A comprehensive water balance methodology for collective irrigation systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    4. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    5. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    6. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    7. repec:kqi:journl:2017-2-1-2 is not listed on IDEAS
    8. Rosa Francaviglia & Claudia Di Bene, 2019. "Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A Data Analysis for Italy," Agriculture, MDPI, vol. 9(4), pages 1-14, April.
    9. Malin Falkenmark, 2013. "Adapting to climate change: towards societal water security in dry-climate countries," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(2), pages 123-136, June.
    10. Kherbache, Nabil & Oukaci, Kamal, 2020. "Assessment of capital expenditure in achieving sanitation-related MDG targets and the uncertainties of the SDG targets in Algeria," World Development Perspectives, Elsevier, vol. 19(C).
    11. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    12. Gebreegziabher, Z. & Mekonnen, A. & Beyene, A.D. & Hagos, F., 2018. "Valuation of access to irrigation water in rural Ethiopia: application of choice experiment and contingent valuation methods," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277168, International Association of Agricultural Economists.
    13. Zareena Begum Irfan & Bina Gupta, 2015. "To Consume or to Conserve: Examining Water Conservation Model for Wheat Cultivation in India," Working Papers 2015-101, Madras School of Economics,Chennai,India.
    14. Malte Müller & Jens Rommel & Christian Kimmich, 2018. "Farmers’ Adoption of Irrigation Technologies: Experimental Evidence from a Coordination Game with Positive Network Externalities in India," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 119-139, May.
    15. Unknown, 2012. "Water for wealth and food security: supporting farmer-driven investments in agricultural water management. Synthesis report of the AgWater Solutions Project," IWMI Reports 158834, International Water Management Institute.
    16. Michael Bamidele Fakoya & Emmanuel O. Imuezerua, 2021. "Improving water pricing decisions through material flow cost accounting model: a case study of the Politsi Water Treatment Scheme in South Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2243-2260, February.
    17. Mapedza, Everisto & Haileslassie, A. & Hagos, Fitsum & McCartney, Matthew & Awulachew, Seleshi Bekele & Tafesse, T., 2009. "Transboundary water governance institutional architecture: reflections from Ethiopia and Sudan," IWMI Conference Proceedings 212439, International Water Management Institute.
    18. Sikka, A. K., 2009. "Water productivity of different agricultural systems," IWMI Books, Reports H042637, International Water Management Institute.
    19. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    20. Ibrahim M. A. Soliman, 2019. "Forecasting Model of Wheat Yield in Relation to Rainfall Variability in North Africa Countries," International Journal of Food and Beverage Manufacturing and Business Models (IJFBMBM), IGI Global, vol. 4(2), pages 1-17, July.
    21. Popović, Vesna & Vasiljević, Zorica, 2013. "Sustainable Management Of Land, Water And Biodiversity In Agriculture Under Climate Change," Agri-Food Sector in Serbia: State and Challenges, Serbian Association of Agricultural Economists, number 157562 edited by Škorić, Dragan & Tomić, Danilo & Popović, Vesna, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecoser:v:12:y:2015:i:c:p:55-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/ecosystem-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.