IDEAS home Printed from
   My bibliography  Save this article

Predicting criminal recidivism using 'split population' survival time models


  • Schmidt, Peter
  • Witte, Ann Dryden


In this paper we develop a survival time model in which the probability of eventual failure is less than one, and in which both the probability of eventual failure and the timing of failure depend (separately) on individual characteristics. We apply this model to data on the tiring of return to prison for a sample of prison releasees, and we use it to make predictions of whether or not individuals return to prison. Our predictions are more accurate than previous predictions of criminal recidivism. The model we develop has potential applications in economics: far example, it could tie used to model the probability of default and the timing of default on loans.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Schmidt, Peter & Witte, Ann Dryden, 1989. "Predicting criminal recidivism using 'split population' survival time models," Journal of Econometrics, Elsevier, vol. 40(1), pages 141-159, January.
  • Handle: RePEc:eee:econom:v:40:y:1989:i:1:p:141-159

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Goldfeld, Stephen M. & Quandt, Richard E., 1981. "Econometric modelling with non-normal disturbances," Journal of Econometrics, Elsevier, vol. 17(2), pages 141-155, November.
    2. Janus, Michael G., 1985. "Selective incapacitation: Have we tried it? Does it work?," Journal of Criminal Justice, Elsevier, vol. 13(2), pages 117-129.
    3. Kiefer, Nicholas M., 1985. "Specification diagnostics based on Laguerre alternatives for econometric models of duration," Journal of Econometrics, Elsevier, vol. 28(1), pages 135-154, April.
    4. Boyes, William J. & Hoffman, Dennis L. & Low, Stuart A., 1989. "An econometric analysis of the bank credit scoring problem," Journal of Econometrics, Elsevier, vol. 40(1), pages 3-14, January.
    5. Hoffman, Peter B. & Stone-Meierhoefer, Barbara, 1979. "Post release arrest experiences of federal prisoners: A six-year follow-up," Journal of Criminal Justice, Elsevier, vol. 7(3), pages 193-216.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:40:y:1989:i:1:p:141-159. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.