IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v246y2024i1s0304407624002537.html
   My bibliography  Save this article

Consistent causal inference for high-dimensional time series

Author

Listed:
  • Cordoni, Francesco
  • Sancetta, Alessio

Abstract

A methodology for high-dimensional causal inference in a time series context is introduced. Time series dynamics are captured by a Gaussian copula, and estimation of the marginal distribution of the data is not required. The procedure can consistently identify the parameters that describe the dynamics of the process and the conditional causal relations among the possibly high-dimensional variables, under sparsity conditions. Identification of the causal relations is in the form of a directed acyclic graph, which is equivalent to identifying the structural VAR model for the transformed variables. As illustrative applications, we consider the impact of supply-side oil shocks on the economy and the causal relations between aggregated variables constructed from the limit order book for four stock constituents of the S&P500.

Suggested Citation

  • Cordoni, Francesco & Sancetta, Alessio, 2024. "Consistent causal inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 246(1).
  • Handle: RePEc:eee:econom:v:246:y:2024:i:1:s0304407624002537
    DOI: 10.1016/j.jeconom.2024.105902
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624002537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    3. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    4. Luca Mucciante & Alessio Sancetta, 2023. "Estimation of an Order Book Dependent Hawkes Process for Large Datasets," Papers 2307.09077, arXiv.org.
    5. Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
    6. James H. Stock & Mark W. Watson, 2018. "Identification and Estimation of Dynamic Causal Effects in Macroeconomics Using External Instruments," Economic Journal, Royal Economic Society, vol. 128(610), pages 917-948, May.
    7. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    8. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    9. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    10. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
    11. Sentana, Enrique & Fiorentini, Gabriele, 2001. "Identification, estimation and testing of conditionally heteroskedastic factor models," Journal of Econometrics, Elsevier, vol. 102(2), pages 143-164, June.
    12. Selva Demiralp & Kevin D. Hoover, 2003. "Searching for the Causal Structure of a Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 745-767, December.
    13. Diego R. Känzig, 2021. "The Macroeconomic Effects of Oil Supply News: Evidence from OPEC Announcements," American Economic Review, American Economic Association, vol. 111(4), pages 1092-1125, April.
    14. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    15. Karel Mertens & Morten O. Ravn, 2013. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," American Economic Review, American Economic Association, vol. 103(4), pages 1212-1247, June.
    16. Hanson, Michael S., 2004. "The "price puzzle" reconsidered," Journal of Monetary Economics, Elsevier, vol. 51(7), pages 1385-1413, October.
    17. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    18. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    19. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    20. Ryan Donnelly, 2022. "Optimal Execution: A Review," Applied Mathematical Finance, Taylor & Francis Journals, vol. 29(3), pages 181-212, May.
    21. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    22. Faust, Jon & Leeper, Eric M, 1997. "When Do Long-Run Identifying Restrictions Give Reliable Results?," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 345-353, July.
    23. Alessio Moneta & Doris Entner & Patrik O. Hoyer & Alex Coad, 2013. "Causal Inference by Independent Component Analysis: Theory and Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(5), pages 705-730, October.
    24. Selva Demiralp & Kevin D. Hoover, 2003. "Searching for the Causal Structure of a Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 745-767, December.
    25. Alec N. Kercheval & Yuan Zhang, 2015. "Modelling high-frequency limit order book dynamics with support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1315-1329, August.
    26. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    27. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cordoni, Francesco & Dorémus, Nicolas & Moneta, Alessio, 2024. "Identification of vector autoregressive models with nonlinear contemporaneous structure," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
    2. Amengual, Dante & Fiorentini, Gabriele & Sentana, Enrique, 2024. "Specification tests for non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 244(2).
    3. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    4. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    5. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    6. Alain Guay, 2020. "Identification of Structural Vector Autoregressions Through Higher Unconditional Moments," Working Papers 20-19, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    7. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    8. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    9. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
    10. Karamysheva, Madina & Skrobotov, Anton, 2022. "Do we reject restrictions identifying fiscal shocks? identification based on non-Gaussian innovations," Journal of Economic Dynamics and Control, Elsevier, vol. 138(C).
    11. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2022. "Moment tests of independent components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 429-474, May.
    12. Maxand, Simone, 2020. "Identification of independent structural shocks in the presence of multiple Gaussian components," Econometrics and Statistics, Elsevier, vol. 16(C), pages 55-68.
    13. Guay, Alain, 2021. "Identification of structural vector autoregressions through higher unconditional moments," Journal of Econometrics, Elsevier, vol. 225(1), pages 27-46.
    14. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.
    15. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2020. "Proxy SVAR identification of monetary policy shocks: MonteCarlo evidence and insights for the US," University of Göttingen Working Papers in Economics 404, University of Goettingen, Department of Economics.
    16. Miguel Cabello, 2022. "Robust Estimation of the non-Gaussian Dimension in Structural Linear Models," Papers 2212.07263, arXiv.org, revised Sep 2023.
    17. Carlo A. Favero, 2007. "Model Evaluation in Macroeconometrics: from early empirical macroeconomic models to DSGE models," Working Papers 327, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    18. Herwartz, Helmut & Lange, Alexander & Maxand, Simone, 2019. "Statistical identification in SVARs - Monte Carlo experiments and a comparative assessment of the role of economic uncertainties for the US business cycle," University of Göttingen Working Papers in Economics 375, University of Goettingen, Department of Economics.
    19. Drautzburg, Thorsten & Wright, Jonathan H., 2023. "Refining set-identification in VARs through independence," Journal of Econometrics, Elsevier, vol. 235(2), pages 1827-1847.
    20. Thore Schlaak & Malte Rieth & Maximilian Podstawski, 2023. "Monetary policy, external instruments, and heteroskedasticity," Quantitative Economics, Econometric Society, vol. 14(1), pages 161-200, January.

    More about this item

    Keywords

    High-dimensional model; Identification; Nonlinear model; Structural model; Vector autoregressive process;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:246:y:2024:i:1:s0304407624002537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.