IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/29316.html

Refining Set-Identification in VARs through Independence

Author

Listed:
  • Thorsten Drautzburg
  • Jonathan H. Wright

Abstract

Identification in VARs has traditionally mainly relied on second moments. Some researchers have considered using higher moments as well, but there are concerns about the strength of the identification obtained in this way. In this paper, we propose refining existing identification schemes by augmenting sign restrictions with a requirement that rules out shocks whose higher moments significantly depart from independence. This approach does not assume that higher moments help with identification; it is robust to weak identification. In simulations we show that it controls coverage well, in contrast to approaches that assume that the higher moments deliver point-identification. However, it requires large sample sizes and/or considerable non-normality to reduce the width of confidence intervals by much. We consider some empirical applications. We find that it can reject many possible rotations. The resulting confidence sets for impulse responses may be non-convex, corresponding to disjoint parts of the space of rotation matrices. We show that in this case, augmenting sign and magnitude restrictions with an independence requirement can yield bigger gains.

Suggested Citation

  • Thorsten Drautzburg & Jonathan H. Wright, 2021. "Refining Set-Identification in VARs through Independence," NBER Working Papers 29316, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:29316
    Note: TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w29316.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrade, Philippe & Ferroni, Filippo & Melosi, Leonardo, 2024. "Higher-Order Moment Inequality Restrictions for SVARs," The Warwick Economics Research Paper Series (TWERPS) 1537, University of Warwick, Department of Economics.
    2. Brandts, Jordi & El Baroudi, Sabrine & Huber, Stefanie J. & Rott, Christina, 2021. "Gender differences in private and public goal setting," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 222-247.
    3. Geert Mesters & Piotr Zwiernik, 2022. "Non-independent components analysis," Economics Working Papers 1845, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Philippe Andrade & Filippo Ferroni & Leonardo Melosi, 2023. "Identification Using Higher-Order Moments Restrictions," Working Paper Series WP 2023-28, Federal Reserve Bank of Chicago.
    5. Carriero, Andrea & Marcellino, Massimiliano & Tornese, Tommaso, 2024. "Blended identification in structural VARs," Journal of Monetary Economics, Elsevier, vol. 146(C).
    6. Sascha A. Keweloh, 2023. "Structural Vector Autoregressions and Higher Moments: Challenges and Solutions in Small Samples," Papers 2310.08173, arXiv.org.
    7. Lee, Adam & Mesters, Geert, 2024. "Locally robust inference for non-Gaussian linear simultaneous equations models," Journal of Econometrics, Elsevier, vol. 240(1).
    8. Christiane Baumeister, 2025. "Comment on "Local Projections or VARs? A Primer for Macroeconomists"," NBER Chapters, in: NBER Macroeconomics Annual 2025, volume 40, National Bureau of Economic Research, Inc.
    9. Jarociński, Marek, 2024. "Estimating the Fed’s unconventional policy shocks," Journal of Monetary Economics, Elsevier, vol. 144(C).
    10. Sascha A. Keweloh & Mathias Klein & Jan Pruser, 2023. "Estimating Fiscal Multipliers by Combining Statistical Identification with Potentially Endogenous Proxies," Papers 2302.13066, arXiv.org, revised Aug 2025.
    11. Lukas Hoesch & Adam Lee & Geert Mesters, 2022. "Robust inference for non-Gaussian SVAR models," Economics Working Papers 1847, Department of Economics and Business, Universitat Pompeu Fabra.
    12. Lukas Hoesch & Adam Lee & Geert Mesters, 2024. "Locally robust inference for non‐Gaussian SVAR models," Quantitative Economics, Econometric Society, vol. 15(2), pages 523-570, May.
    13. Robin Braun, 2021. "The importance of supply and demand for oil prices: evidence from non-Gaussianity," Bank of England working papers 957, Bank of England.
    14. Emanuele Bacchiocchi & Toru Kitagawa, 2020. "Locally- but not globally-identified SVARs," CeMMAP working papers CWP40/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Herwartz, Helmut & Wang, Shu, 2023. "Point estimation in sign-restricted SVARs based on independence criteria with an application to rational bubbles," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:29316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.