IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v158y2010i2p231-245.html
   My bibliography  Save this article

A low-dimension portmanteau test for non-linearity

Author

Listed:
  • Castle, Jennifer L.
  • Hendry, David F.

Abstract

A new test for non-linearity in the conditional mean is proposed using functions of the principal components of regressors. The test extends the non-linearity tests based on Kolmogorov-Gabor polynomials ([Thursby and Schmidt, 1977], [Tsay, 1986] and [Teräsvirta et al., 1993]), but circumvents problems of high dimensionality, is equivariant to collinearity, and includes exponential functions, so is a portmanteau test with power against a wide range of possible alternatives. A Monte Carlo analysis compares the performance of the test to the optimal infeasible test and to alternative tests. The relative performance of the test is encouraging: the test has the appropriate size and has high power in many situations.

Suggested Citation

  • Castle, Jennifer L. & Hendry, David F., 2010. "A low-dimension portmanteau test for non-linearity," Journal of Econometrics, Elsevier, vol. 158(2), pages 231-245, October.
  • Handle: RePEc:eee:econom:v:158:y:2010:i:2:p:231-245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00009-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Karim Abadir, 1999. "An introduction to hypergeometric functions for economists," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 287-330.
    3. Teräsvirta Timo, 1996. "Power Properties of Linearity Tests for Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-10, April.
    4. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    5. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    6. Phoebus J. Dhrymes & E. Philip Howrey & Saul H. Hymans & Jan Kmenta & Edward E. Leamer & Richard E. Quandt & James B. Ramsey & Harold T. Shapiro & Victor Zarnowitz, 1972. "Criteria for Evaluation of Econometric Models," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 1, number 3, pages 291-324 National Bureau of Economic Research, Inc.
    7. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    8. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-1458, November.
    9. Spanos,Aris, 1986. "Statistical Foundations of Econometric Modelling," Cambridge Books, Cambridge University Press, number 9780521269124, October.
    10. Phillips, Peter C.B., 2007. "Regression With Slowly Varying Regressors And Nonlinear Trends," Econometric Theory, Cambridge University Press, vol. 23(04), pages 557-614, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stillwagon, Josh R., 2016. "Non-linear exchange rate relationships: An automated model selection approach with indicator saturation," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 84-109.
    2. Jennifer Castle & David Hendry, 2010. "Automatic Selection for Non-linear Models," Economics Series Working Papers 473, University of Oxford, Department of Economics.
    3. repec:taf:oaefxx:v:4:y:2016:i:1:p:1170096 is not listed on IDEAS
    4. Frank Asche, Atle Oglend, and Petter Osmundsen, 2017. "Modeling UK Natural Gas Prices when Gas Prices Periodically Decouple from the Oil Price," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Jurgen A. Doornik, 2016. "An Example of Instability: Discussion of the Paper by Søren Johansen and Bent Nielsen," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 357-359, June.
    6. Barry Harrison & Winston Moore, 2012. "Stock Market Efficiency, Non-Linearity, Thin Trading and Asymmetric Information in MENA Stock Markets," Economic Issues Journal Articles, Economic Issues, vol. 17(1), pages 77-93, March.
    7. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2013. "Model Selection in Equations with Many ‘Small’ Effects," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(1), pages 6-22, February.
    8. Shahid IQBAL & Maqbool H. SIAL, 2016. "Projections of Inflation Dynamics for Pakistan: GMDH Approach," Journal of Economics and Political Economy, KSP Journals, vol. 3(3), pages 536-559, September.
    9. Francisco Salas-Molina & Juan A. Rodr'iguez-Aguilar & Joan Serr`a & Montserrat Guillen & Francisco J. Martin, 2016. "Empirical analysis of daily cash flow time series and its implications for forecasting," Papers 1611.04941, arXiv.org, revised Jun 2017.
    10. David F. Hendry, 2011. "Empirical Economic Model Discovery and Theory Evaluation," Rationality, Markets and Morals, Frankfurt School Verlag, Frankfurt School of Finance & Management, vol. 2(46), October.
    11. repec:eee:intfor:v:34:y:2018:i:1:p:119-135 is not listed on IDEAS
    12. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
    13. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    14. Anne Péguin-Feissolle & Bilel Sanhaji, 2015. "Testing the Constancy of Conditional Correlations in Multivariate GARCH-type Models (Extended Version with Appendix)," AMSE Working Papers 1516, Aix-Marseille School of Economics, Marseille, France.
    15. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    16. David Hendry & Grayham E. Mizon, 2016. "Improving the Teaching of Econometrics," Economics Series Working Papers 785, University of Oxford, Department of Economics.
    17. repec:taf:oaefxx:v:3:y:2015:i:1:p:1045216 is not listed on IDEAS
    18. Jahyun Koo & Ivan Paya & David A. Peel, 2012. "The Bank of Korea's nonlinear monetary policy rule," Applied Economics Letters, Taylor & Francis Journals, vol. 19(12), pages 1193-1202, August.
    19. Josh R. Stillwagon, 2015. "TIPS and the VIX: Non-linear Spillovers from Financial Panic to Breakeven Inflation," Working Papers 1502, Trinity College, Department of Economics.
    20. Jurgen A. Doornik & David F. Hendry & Steve Cook, 2015. "Statistical model selection with “Big Data”," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1045216-104, December.
    21. Ericsson Neil R., 2016. "Testing for and estimating structural breaks and other nonlinearities in a dynamic monetary sector," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 377-398, September.
    22. Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Functional form Portmanteau test Non-linearity Principal components Collinearity;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:158:y:2010:i:2:p:231-245. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.