IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v23y2007i04p557-614_07.html
   My bibliography  Save this article

Regression With Slowly Varying Regressors And Nonlinear Trends

Author

Listed:
  • Phillips, Peter C.B.

Abstract

No abstract is available for this item.

Suggested Citation

  • Phillips, Peter C.B., 2007. "Regression With Slowly Varying Regressors And Nonlinear Trends," Econometric Theory, Cambridge University Press, vol. 23(04), pages 557-614, August.
  • Handle: RePEc:cup:etheor:v:23:y:2007:i:04:p:557-614_07
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466607070260
    File Function: link to article abstract page
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kairat T. Mynbaev, 2011. "Regressions with asymptotically collinear regressors," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 304-320, July.
    2. Jennifer Castle & David Hendry, 2010. "Automatic Selection for Non-linear Models," Economics Series Working Papers 473, University of Oxford, Department of Economics.
    3. repec:wly:japmet:v:33:y:2018:i:1:p:141-159 is not listed on IDEAS
    4. Jin Seo Cho & Myung-Ho Park & Peter C. B. Phillips, 2016. "Sequentially Testing Polynomial Model Hypotheses Using Power Transforms of Regressors," Cowles Foundation Discussion Papers 2060, Cowles Foundation for Research in Economics, Yale University.
    5. Yonghui Zhang & Liangjun Su & Peter C. B. Phillips, 2012. "Testing for common trends in semiā€parametric panel data models with fixed effects," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 56-100, February.
    6. Castle, Jennifer L. & Hendry, David F., 2010. "A low-dimension portmanteau test for non-linearity," Journal of Econometrics, Elsevier, vol. 158(2), pages 231-245, October.
    7. Yoshimasa Uematsu, 2011. "Asymptotic Efficiency of the OLS Estimator with Singular Limiting Sample Moment Matrices," Global COE Hi-Stat Discussion Paper Series gd11-208, Institute of Economic Research, Hitotsubashi University.
    8. Norbert Christopeit & Michael Massmann, 2017. "Strong consistency of the least squares estimator in regression models with adaptive learning," WHU Working Paper Series - Economics Group 17-07, WHU - Otto Beisheim School of Management.
    9. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    10. Jianning Kong & Peter C.B. Phillips & Donggyu Sul, 2017. "Weak s- Convergence: Theory and Applications," Cowles Foundation Discussion Papers 2072, Cowles Foundation for Research in Economics, Yale University.
    11. Uematsu, Yoshimasa, 2016. "Asymptotic efficiency of the OLS estimator with singular limiting sample moment matrices," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 104-110.
    12. Norbert Christopeit & Michael Massmann, 2018. "Strong consistency of the least squares estimator in regression models with adaptive learning," Tinbergen Institute Discussion Papers 18-045/III, Tinbergen Institute.
    13. Norbert Christopeit & Michael Massmann, 2013. "Estimating Structural Parameters in Regression Models with Adaptive Learning," Tinbergen Institute Discussion Papers 13-111/III, Tinbergen Institute.
    14. Baek, Yae In & Cho, Jin Seo & Phillips, Peter C.B., 2015. "Testing linearity using power transforms of regressors," Journal of Econometrics, Elsevier, vol. 187(1), pages 376-384.
    15. Magdalinos, Tassos, 2012. "Mildly explosive autoregression under weak and strong dependence," Journal of Econometrics, Elsevier, vol. 169(2), pages 179-187.
    16. Mynbaev, Kairat, 2007. "Comment on "Regression with slowly varying regressors and nonlinear trends" by P.C.B. Phillips," MPRA Paper 8838, University Library of Munich, Germany, revised 23 May 2008.
    17. Tassos Magdalinos, 2008. "Mildly explosive autoregression under weak and strong dependence," Discussion Papers 08/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    18. Gao, Jiti & Robinson, Peter M., 2014. "Inference on nonstationary time series with moving mean," LSE Research Online Documents on Economics 66509, London School of Economics and Political Science, LSE Library.
    19. Yoshimasa Uematsu, 2011. "Regression with a Slowly Varying Regressor in the Presence of a Unit Root," Global COE Hi-Stat Discussion Paper Series gd11-209, Institute of Economic Research, Hitotsubashi University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:23:y:2007:i:04:p:557-614_07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.